

MONTEREY, CALIFORNIA

THESIS

This thesis done in cooperation with the MOVES Institute.

Approved for public release; distribution is unlimited.

AN OPEN ARCHITECTURE FOR DEFENSE VIRTUAL
ENVIRONMENT TRAINING SYSTEMS

by

Stephen W. Matthews and Kenneth H. Miller

September 2003

 Thesis Advisor: Rudolph P. Darken
 Co-Advisor: Joseph A. Sullivan

NAVAL
POSTGRADUATE

SCHOOL

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
 An Open Architecture for Defense Virtual Environment Training Systems
6. AUTHOR(S) Capt Stephen Matthews (USMC) and LT Kenneth Miller (USN)

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 This thesis develops a proposed software system that allows programmers to create virtual
reality training environment applications for military (or other) use in which characters and
character animation are necessary. Such applications are becoming more necessary to fill a gap
in military training due to lack of personnel, time, money, and resources. Creation of virtual
environment training applications allows military units to augment procedural training in
preparation for live or physically simulated training. In the current environment of lesser
training and more military requirements, such augmentation will only serve to benefit unit
capabilities. While such systems for developing virtual environment applications are
commercially available, those systems are costly in both licensing and usage fees. One of the
tenets of the system that this thesis develops is that this system will be free and partially open
source, such that programmers can create low cost virtual environment applications for military
training, and such that experienced programmers can modify or add to the system in order to
improve or enhance its capabilities to meet their needs.

15. NUMBER OF
PAGES 197

14. SUBJECT TERMS
Character Animation, Motion Capture, MOUT, Close Quarter Battle,
CQBSim, Training, Virtual Environment, Open Source, Scene Graph,
Software Architecture 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN OPEN ARCHITECTURE FOR DEFENSE VIRTUAL ENVIRONMENT
TRAINING SYSTEMS

Stephen W. Matthews

Captain, United States Marine Corps
B.S., University of Illinois, 1997

Kenneth H. Miller

Lieutenant, United States Navy
B.S., University of North Florida, 1996

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2003

Authors: Stephen W. Matthews

 Kenneth H. Miller

Approved by: Rudolph P. Darken

Thesis Advisor

Joseph A. Sullivan
Co-Advisor

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis develops a proposed software system that is usable by programmers to

create virtual reality training environment applications for military (or other) use in which

characters and character animation are necessary. Such applications are becoming more

necessary to fill a gap in military training due to lack of personnel, time, money, and

resources. Creation of virtual environment training applications allows military units to

augment procedural training in preparation for live or physically simulated training. In

the current environment of lesser training and more military requirements, such

augmentation will only serve to benefit unit capabilities. While such systems for

developing virtual environment applications are commercially available, those systems

are costly in both licensing and usage fees. One of the tenets of the system that this thesis

develops is that this system will be free and partially open source, such that programmers

can create low cost virtual environment applications for military training, and such that

experienced programmers can modify or add to the system in order to improve or

enhance its capabilities to meet their needs.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. MOTIVATION ..1
C. HOW TO READ THIS THESIS ..2
D. USE OF VIRTUAL REALITY TRAINING ENVIRONMENTS

(VRTEs) ..3
1. Requirements for Effective VRTEs..4

a) Immersion..4
b) Presence...4
c) Specific Training Goals ..5
d) Specific Virtual Tasks and Responses Geared Toward the

Training Goals ..5
e) Realistic Scenarios that Play Out Realistically........................5
f) Dynamic...5
g) Scalability ..6
h) Feedback..6

2. Benefits of Using VRTEs...6
a) Training to Specific, Focused Goals ..7
b) Repetition of Same Training...7
c) Potential for Comprehensive, Objective Review and After

Action Reports (AARs)..7
d) The Ability to Add or Remove "Stress Levels" or

Battlefield Characteristics as Needed.......................................7
e) Provides for Unsafe or Potentially Unsafe Training to be

Conducted in a Safe Environment ...8
f) Cost Savings ..8
g) Reduced Setup Time..9
h) Small Footprint ...9
i) Large Scale Virtual Networked Training Environments9
j) Provides an Experience Level that can Potentially

Accomplish the Mission and Save Lives10
3. Drawbacks of Using VRTEs ...10

a) Lack of Realism...11
b) Requirement to Learn How to Use the System and

Equipment ...11
c) VRTEs can Train Poor or Incorrect Practices12
d) VRTEs can Neglect Procedures that Lead to Lack of

Ability...12
e) Frustration can Lead to Lack of Desire to Train13
f) Negative Impacts ...13

4. Prospective Military Training Applications for VRTEs14

 viii

a) Equipment Familiarity or Usage Procedures14
b) Procedural learning of Standard Operating Procedures

(SOPs)..15
c) Navigation Skills ...15
d) Terrain Appreciation/Environmental Familiarization..........15
e) Decision Making Skills Training ...16

5. Examples of Current VRTE Military Applications........................16
a) Combined Arms Tactical Trainer (CATT).............................16
b) Deployable Virtual Training Environment by Coalescent

Technologies Corporation ..19
c) Shiphandling Simulation Training by Marine Safety

International ...22
d) Air Traffic Control Virtual Reality (ATCVR) Training

System {delivered by Southwest Research Institute
(SwRI)} ..23

e) Helicopter Navigation Studies at the Naval Postgraduate
School ..24

E. DEVELOPMENT OF SOFTWARE AS A COMMODITY25
1. Simulation Engines ..26

a) Basic Overview ..26
b) Commonalities List ...27

2. Commercial Off-the Shelf Software (COTS) vs. Open-Source
software...32
a) Commoditization and Interoperability32
b) Cost Factor ..33
c) Software Lock-in...34

F. SPECIFICATION OF SOFTWARE ENGINE FUNCTIONALITY........35
1. Superset of Software Engine Modules ...35
2. Modules Covered in this Thesis ..35

II. INPUT IMPLEMENTATION...37
A. CHARACTER ANIMATION...37

1. Motivation...37
a) Introduction - What is Character Animation37
b) History of Character Animation (Pre-Computers to

Present)..37
c) The Principles of Animating a Character..............................39
d) Modeling the Character ..40
e) Creating the Animations and Motion Capture41

2. Implementation ..46
a) Integrating the Character Animation API.............................46
b) Modeling the Character ..46
c) Rigging with a Skeleton ..50
d) Applying Weights to the Vertices..52
e) Mapping and Applying the Motion Capture Data53
f) Final Adjustments and Exporting the Model55

 ix

3. Application..57
4. Future Work...58

B. XML READ/WRITE FUNCTIONALITY..59
1. Motivation...59
2. Implementation ..59
3. Application..60

a) System File ..61
b) Scenario File ...64
c) Character Definition File ...66

4. Future Work...67
C. AGENTS ...68

1. Motivation...68
2. Implementation ..69

a) Waypoints ..69
b) Gradients ...69
c) Pathing ..70
d) Immediate Responses..71
e) Agent Motion...72
f) Putting it all Together ...72
g) Pathematics ...73

3. Application..73
a) How to Create a Set of Waypoints ..73
b) How to Create an Agent..75

4. Future Work Specific to the gfAgent API75
D. NETWORKING...77

1. Motivation...77
2. Implementation ..78
3. Application..81
4. Future Work...83

E. PHYSICS ..85
1. Motivation...85
2. Implementation ..86

a) Use of Existing Technology..86
b) Physics Through Inheritance and Encapsulation.................86
c) Abstracting Physics Functionality into Core libGF

Classes ...87
3. Application..91

a) How the System Starts a World and Space91
b) Setting Global Physics and Collision Parameters91
c) How to Create a Geometry..91
d) How to Create a Transform Geometry92
e) How to Create a Group Geometry ..92
f) Collision Geometry Settings..95
g) How to Create a Body ...95
h) Physics Body Settings ...96

 x

i) Attaching/Detaching a Geometry to/from a Body96
j) How to Set the Geometry and Body to the gfDynamic

Member..97
k) How to Explicitly Enable/Disable Collision

Detection/Physics ..98
l) Collision Detection and Physics Enable/Disable Defaults....98
m) gfDynamic Member Physics/Collision Configurations99
n) How to Set a Ground Plane ..99
o) Adding Forces and Setting Positions of Physics Objects100

4. Future Work Specific to the gfPhysics API...................................101
F. INPUT ...102

1. Motivation...102
2. Implementation ..103
3. Application..107

a) Creating a gfMotionHuman Motion Model.........................107
b) The Initial Motion Model Action Mappings108
c) Defining the Mappings ...110
d) Handling Actions for Input Devices.....................................110
e) A Motion Model other than gfMotionHuman112

4. Future Work...112

III. SYSTEM USABILITY ANALYSIS...113
A. INTRODUCTION..113
B. BACKGROUND ..113

1. Subjects ...113
2. Hardware ..113
3. Environment...115

C. EXPERIMENT ..116
1. In Briefing...116
2. Completing the Tasks ..117
3. User Questionnaire ..117

D. RESULTS ...117
1. Subject Profile ..117
2. Subject Questionnaire Results ..118
3. Statistical Results ...119

IV. CONCLUSIONS AND RECOMMENDATIONS...127
A. MILITARY TRAINING COMMANDS HAVE VIABLE VIRTUAL

REALITY ALTERNATIVES...127
B. VIRTUAL REALITY TRAINING TOOLS DO NOT HAVE TO BE

EXPENSIVE...128

V. FUTURE WORK...129
A. REORGANIZATION OF THE ARCHITECTURE129
B. DETERMINING WHETHER APPLICATIONS BUILT ON LIBGF

PROVIDE POSITIVE TRAINING TRANSFER.....................................130

LIST OF REFERENCES..131

 xi

APPENDIX A. LIBGF QUICK-START USER MANUAL135
A. REQUIRED SETUP FOR DEVELOPMENT ..135

1. Setting up WinCVS to Download the Source Code135
2. Downloading and Installing Software Prior to Compilation135
3. Setting up Visual C++® 6.0 for libGF Development136
4. Setting up the Environment Variables...137
5. Building the libGF .lib Files ..137
6. Building the Example Programs...137

B. A BASIC LIBGF APPLICATION...138
C. ADDING MEDIAPATHS ...138
D. ADDING A WINDOW..139
E. ADDING AN OBSERVER ...139
F. ADDING A CHANNEL ..139
G. ADDING A SCENE ...140
H. ADDING AN ENVIRONMENT...141
I. ADDING A DATABASE MANAGER ..141
J. ADDING AN OBJECT ...142
K. ADDING A MOTION MODEL ...142
L. ADDING A PLAYER..143
M. ADDING A GFGRAPHICS..144
N. ADDING A GFGUI ...145
O. DISPLAYING CONSOLE NOTIFICATIONS ..145
P. SUBSCRIBING TO THE GFSYSTEM...146

APPENDIX B: EXPERIMENT QUESTIONNAIRE...149

APPENDIX C: EXPERIMENT SCRIPTS..165
A. BUILDING 1 SEGMENT 1 ..165
B. BUILDING 1 SEGMENT 2 ..166
C. BUILDING 1 SEGMENT 3 ..167
D. BUILDING 2 SEGMENT 1 ..168
E. BUILDING 2 SEGMENT 2 ..169
F. BUILDING 2 SEGMENT 3 ..170
G. BUILDING 3 SEGMENT 1 ..171
H. BUILDING 3 SEGMENT 2 ..172
I. BUILDING 3 SEGMENT 3 ..173

INITIAL DISTRIBUTION LIST ...175

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF FIGURES

Figure 1. Combined Arms Tactical Trainer (CATT) (From Ref.)17
Figure 2. Close Combat Tactical Trainer (CCTT) (From Ref.)18
Figure 3. Deployable Virtual Training Environment (DVTE) (From Ref.)....................20
Figure 4. Fire Team Cognitive Trainer (FTCT) (From Ref.) ..21
Figure 5. MSI Shiphandling Simulator (From Ref.) ...22
Figure 6. Air Traffic Control Virtual Reality (ATCVR) (From Ref.).............................24
Figure 7. Creating a new gfCal3dNode...46
Figure 8. Creating the geometry arrays in gfCal3dNode ..46
Figure 9. Modeling the character - polygon mesh...48
Figure 10. Texture file before applying to model ...49
Figure 11. Texturing the model...49
Figure 12. Hierarchy of bones in character model ..51
Figure 13. Rigging the skeleton ..52
Figure 14. Painting the vertex weights..53
Figure 15. Mapping the motion capture ..55
Figure 16. Creating a new gfCal3dObject and adding the motion model.........................57
Figure 17. Incorrectly labeled entities...59
Figure 18. Correctly labeled entities ...60
Figure 19. Example XML code...60
Figure 20. Example of system.xml file ...64
Figure 21. Example scenario file...66
Figure 22. Example Character definition file (Marine.xml) ...67
Figure 23. gfAgent API tiered architecture ...73
Figure 24. a gfWaypointSet waypoints file, WaypointSet.xml...74
Figure 25. Creating a gfWaypointSet..74
Figure 26. Creating a gfAgentPlayer...75
Figure 27. Example of a new network packet ...81
Figure 28. Creating a new network object ..81
Figure 29. Adding message passing/receiving capability ...82
Figure 30. Sending a data packet from the motion model to the network82
Figure 31. Receiving a network packet and handling the data..83
Figure 32. Inheritance and encapsulation of the gfPhysicsObject class............................86
Figure 33. gfSystem inherits gfPhysicsWorld and gfCDSpace functionality87
Figure 34. gfSystem physics step loop in main execution loop ..88
Figure 35. gfSystem physics leftover time step in main execution loop; removed due

to instability ...89
Figure 36. Stepwise update of objects in the scene relative to their physics

representation...90
Figure 37. Repositioning an object, which updates its visual position and its related

physics object position...90
Figure 38. Setting the physics step type for accuracy or speed...91

 xiv

Figure 39. Setting gravity for a simulation..91
Figure 40. Creating a gfCDGeom ...92
Figure 41. Creating a gfCDGeomTransform ..92
Figure 42. Creating a gfCDGeomGroup through manual additions93
Figure 43. Creating a gfCDGeomGroup via an XML file ..93
Figure 44. Creating a geometry group XML file ..95
Figure 45. Setting the slip coefficient for a collision geometry ..95
Figure 46. Creating a gfPhysicsBody..96
Figure 47. Setting the mass on a physics body..96
Figure 48. Setting/removing the geometry and body of a gfDynamic member................97
Figure 49. Enabling/disabling collision detection and physics ...98
Figure 50. Creating a ground plane ...100
Figure 51. Methods for adding/setting forces to physics-based objects..........................101
Figure 52. IS-300 Pro Precision Motion Tracker System (InterSense) (From Ref.).......104
Figure 53. Generic input device interface to DirectX® ..105
Figure 54. Creating a new Isense input device and adding a cube to the device106
Figure 55. gfInputISense handles querying the tracker for cube position.......................107
Figure 56. How to create a new gfMotionHuman model..108
Figure 57. Setting the player motion model ..108
Figure 58. Setting a tracker as an input to an observer ...108
Figure 59. Example action mapping in gfMotionHuman..110
Figure 60. Resetting the rifle offset based on the inertial cube.......................................111
Figure 61. Handling received actions from gfInputGeneric devices...............................112
Figure 62. MOUT Overhead ...115
Figure 63. Target ...116
Figure 64. Oneway Analysis of Total Time By Treatment at 90 degrees.......................120
Figure 65. Oneway Analysis of Discontinuities By Treatment at 90 degrees121
Figure 66. Oneway Analysis of Discontinuities/Sec By Treatment at 90 degrees..........122
Figure 67. Oneway Analysis of Total Time By Treatment at 45 degrees.......................123
Figure 68. Oneway Analysis of Discontinuities By Treatment at 45 degrees124
Figure 69. Oneway Analysis of Discontinuities/Sec By Treatment at 45 degrees..........125
Figure 70. A basic libGF application consists of a gfSystem ...138
Figure 71. Implementation of gfMediaPath ..138
Figure 72. Manual use of gfMediaPath ...139
Figure 73. Creating a gfWindow...139
Figure 74. Creating a gfObserver ..139
Figure 75. Creating a gfChannel and setting several of its parameters...........................140
Figure 76. Creating a gfScene ...140
Figure 77. Creating a gfEnvironment, adding it to the scene, setting it to the observer .141
Figure 78. Creating a gfDBManager to open and manage file information....................141
Figure 79. Creating a gfObject, loading its geometry, an adding it to the scene or

environment ...142
Figure 80. Creating a new gfMotionHuman motion model ..143
Figure 81. Creating a gfPlayer, adding a motion model, adding a visible object, and

tethering the observer...144

 xv

Figure 82. Creating a gfGraphics ..144
Figure 83. Creating a gfGUI..145
Figure 84. Setting the console notification level and sending messages to the

notification system...145
Figure 85. The gfNotification levels ...146
Figure 86. Inheriting from gfBase and redefining onNotify() in the .h file146
Figure 87. Adding the system as a notifier to a class ..147
Figure 88. Class specific definition of onNotify() in the .cpp file147
Figure 89. Casting notification data passed into onNotify() ...147

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF TABLES

Table 1. gfCal3dNetwork Packet Descriptions..80
Table 2. Initial input device mappings for DirectX® ..109

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

We would like to take this opportunity to thank several individuals who through

their assistance, support, and advice have made the completion of this thesis possible.

First, we want to thank Dr. Rudy Darken and CDR Joe Sullivan for having faith in our

ideas and providing the resources, environment, and most importantly encouragement to

complete our ambitious project. Erik Johnson and Matt Prichard combined their areas of

expertise to enable us to put together a working system on several different platforms.

Finally we would like to thank our wives, Margie and Lana for their

understanding and support during our time here at the Naval Postgraduate School. The

completion of this thesis and earning our Masters Degrees would not have been possible

without their support and sacrifice.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PROBLEM STATEMENT

Military training is an absolute requirement, with more need now than ever before

to ensure our service members are capable of performing the tasks and duties required of

them in order to carry out the mission. Operational tempo has never been higher, with

more forward deployed forces, more contingency planning, more international

cooperative efforts, and more real world operations than before. In addition to

operational tempo being so high, technology advances have provided the military with

state-of-the-art equipment which has incredible capability but which also requires much

more training than ever before. The ability to train underway and during the deployment

cycle would allow greater flexibility in sustaining readiness over the deployment cycles,

but currently, the tools to do so are not available.

In addition to the lack of deployable training tools, budgetary constraints are an

additional burden on the ability to maintain readiness; training budgets are getting tighter,

with training resources and facilities being either overtaxed or removed through base

closures. Units needing to use a training facility have to schedule sometimes months

ahead, and typically there are only a few training facilities aboard bases where there are

many units in need of those facilities to get their personnel trained to required standards,

often in advance of real world operations. Flight hours and ammunition, among a long

list of expendable items needed for training, are expensive resources that the military is

trying to find a way to cut the cost on, so that money can go to operations. The problem

with cutting costs is that it also cuts the amount of training being conducted, forcing the

military to either find more inexpensive means of training or do without.

B. MOTIVATION

The driving focus behind the application development that this thesis has inspired

is that training budgets are getting tighter, time to train is becoming harder to come by,

and there are times where we can take advantage of lost time with our service members,

 2

through virtual training environments, to ensure live training is as effective as possible.

For example, when Marines go out as forward deployed units aboard ship in order to be

capable of forced entry at a moment’s notice, much of the time spent aboard ship is

wasted with respect to training due to the inability to effectively train in the confined

environment, and during that time, capabilities are doubly hurt by allowing skills to

atrophy. While leaders try to keep their Marines’ and Sailors’ skills sharp through

tactical decision games, map exercises, and other verbally conferred training, more

effective use of time could be spent allowing small units to get some realistic, immersive,

procedural and cognitive training, going step by step through standard operating

procedures with small units in a virtual environment, with the capability of rehearsing

until Marines and Sailors are well-versed and familiar with SOPs.

Virtual reality training tools are one method of enhancing live training and adding

additional training time at a much lower cost. VR training environments remove many of

the constraints of live training that make live training so costly; requirements such as

travel, resource scheduling, and ammunition, supply, and equipment requirements are

eliminated, with the only requirement for VR training being the computer hardware and

equipment to run the software and the software itself. VR training can be used when

resources are simply not available or when safety precludes the live training of standards

that personnel are required to train to. An added benefit is that VR training can allow for

the capture of data, which can aid in creating accurate and timely after-action reports.

C. HOW TO READ THIS THESIS

The rest of this chapter is divided into two major portions; the first provides an in-

depth analysis on the use of virtual environments for training purposes, and the second

concentrates on the development of software as a commodity, specifically with regard to

scene graph engines. While these are necessary topics of understanding to any persons

interested in the subject, they are background information and may be read independent

of the rest of the paper. For those interested in delving directly into the open architecture

for which this thesis was written, you will want to move directly to Chapter II. Chapter

III is a system usability analysis that demonstrates a practical application created using

 3

libGF, the open architecture discussed in this thesis. The application not only

demonstrates use of the architecture, but also provides experimental results on the

differences in maneuverability between various input configurations. Chapter IV

provides conclusions and recommendations regarding the use of an open architecture for

creating virtual training environments. Chapter V concludes with future work that the

authors see as useful to this thesis. Programmers who want to understand the basics of

creating a libGF program and adding objects to the scene should review Appendix A.

D. USE OF VIRTUAL REALITY TRAINING ENVIRONMENTS (VRTEs)

Ten years ago, the average person could not tell you what virtual reality,

cyberspace, or an artificial environment was. Today, virtual reality is a commonplace

term to those in the computer field and is fast becoming an everyday term to all others.

The reason for this phenomenon is that virtual reality tools and environments are better

and more available, and businesses are seeing the training, promotional, and corporate

potential for them. Militaries have also seen the capabilities of virtual reality

environments and are currently developing and using this technology for recruitment

promotion and training.

What militaries have to realize, however, is that the substance of the virtual reality

simulations they use for training must meet criteria that ensure training is enhanced

through proper use of training goals. Otherwise, virtual reality training environments may

be nothing more than glorified, high-tech video games at best, and, at worst, can waste

time that could be used on valuable training and can train personnel to poor or incorrect

standards.

This section focuses on the potential and capabilities of Virtual Reality Training

Environments (VRTEs) in current military applications, beginning with the requirements

necessary of a VRTE to effectively train personnel, followed by the potential benefits and

drawbacks of using VRTEs for military training. Next, several types of military training

applications for which VRTEs are useful will be described, followed by specific

examples of VRTEs being used or tested.

 4

1. Requirements for Effective VRTEs

There are several requirements in order for Virtual Reality Training Environments

(VRTEs) to be effective training tools. The leader wants to ensure that time is not wasted

on ineffective training and that the VRTE being used is not training to poor or incorrect

standards. Some requirements for VRTE training to be effective include:

a) Immersion

Being immersed, with relation to virtual environments, means being

surrounded by something; everywhere you look, it's there. To create a sense of

immersion in a virtual environment, we must be able to surround ourselves with various

stimuli in a manner that makes sense and that follows rules similar to those of the real

world. That is, when you turn your head to the left, you see the objects to the left of you.

When you walk forward, you get closer to the objects in front of you. These are

elementary features of our sense of being immersed in an environment; and when you're

in a virtual environment, you expect the same results. (Aukstakalnis, 1992, p. 28)

For visual stimulus, a well-developed 3D viewing area is necessary to

immerse the user in the virtual environment. For auditory stimulus, the ideal immersive

auditory cues are those that sound to the user like they are coming from the location in

the virtual environment that corresponds to its relative location in the real world with

respect to the user's position. (i.e., a sound from five feet to the left of the user's position

in the virtual environment sounds like it is really coming from a position located five feet

to the left of the user) And for haptic (touch) stimulus, a truly immersive environment

provides the user with haptic feedback when a part of the user's virtual self collides with

or touches a part of the virtual environment. (i.e., when the user's virtual hand pushes on

a table, the user feels the force applied as it would if he were doing the same action in the

real world)

b) Presence

“When one is immersed in a synthetic environment and can interact with

that environment one experiences presence. Presence is the experience of feeling that one

is physically present within the computer-generated environment. Sometimes this

 5

experience is informally referred to as ‘being there.’” (Johnson, 1997, p. 4) Concerning

the need for and use of presence, the key is to distinguish the requirement for presence

versus that for immersion. Immersion is when the user's expectations of the environment

around him/her are correct; presence is the actual feeling of being present through not

only immersion but through the ability to interact with the environment.

c) Specific Training Goals

For the VRTE to be an effective training tool, it must be geared toward

specific training goals. Many current computer games provide enough immersion and

presence to allow for a worthwhile training experience, but the reason they are video

games and not training environments for military application is that the goal is to "win

the game." Training environments, virtual or real, have training goals that must be

accomplished in order to validate the participant's level of training.

d) Specific Virtual Tasks and Responses Geared Toward the
Training Goals

 For the VRTE to be effective, not only must it have specific training goals,

but the virtual tasks and responses to the user's actions must all lead toward training the

individual to the training goals; if the virtual environment does not keep the focus on the

training goals, or at least constantly provide opportunity to focus on those goals, the user

can wander in the virtual environment and thereby receive no training or ineffective

training.

e) Realistic Scenarios that Play Out Realistically

 Further, for the virtual tasks and responses of the environment to keep

focus on the training goals, the environment must not lead the participant into "dead

ends" or into an "end of the world" scenario. This is not to say that that virtual

environments cannot have boundaries, but to be effective as a virtual environment, the

participant should either not know that the boundaries are there or should know up front

where the boundaries are and why.

f) Dynamic

 The program or the instructor must have the ability to change the

environment, in order to prevent stagnation in training. Where the video game again

 6

provides ample immersion and presence, what it does not normally provide is the ability

for the environment to be different on every training exercise or, better, for the instructor

to decide, exercise by exercise, what the environment will contain and how it will act and

react.

g) Scalability

 The program or the instructor must also have the ability to scale the

environment up or down to meet the size and experience of the unit being trained and to

provide the level of training commensurate with the unit size of the trainees. In addition,

if the need is present to train across units, the environment needs to be able to handle

training across units through interoperability of systems.

h) Feedback

 Finally, the environment must provide feedback to the instructor and to the

participants in order to validate whether the training goals are being met, how well, and,

if not, what the participants need to change or perform better to reach the training goals.

Without feedback, the effectiveness of the application as a training tool is diminished by

the effect that a) the participant will only learn what he can see or what he does himself

(as opposed to learning from a general overview of what happened or learning from other

participants’ actions), and b) the ability of an instructor to evaluate the participants’

actions and decisions is diminished.

2. Benefits of Using VRTEs

There are many benefits to using Virtual Reality Training Environments.

(VRTEs) No VRTE can replace full-scale, live training, but using them to supplement

training that is costly and therefore not performed as often as necessary allows users to

gain cognitive and procedural skills that will enhance the live training that is conducted

or, in the absence of live training, will give the participants at least a solid foundation of

cognitive and procedural skills from which to draw from when faced with a real scenario.

Some of the specific benefits of using VRTEs include:

 7

a) Training to Specific, Focused Goals

VRTEs, being computer simulations, can be designed to lead users toward

goals so that training time is well spent and so that the user remains focused on the

training goals without explicitly realizing that the simulator is leading him/her toward

those training goals.

b) Repetition of Same Training

VRTEs allow users to repeat skills as many times as needed or wanted and

as often as necessary in order to ensure that the user becomes proficient in the

rudimentary skills being taught; the saying "practice makes perfect" holds well here, as

the user is capable of practicing the same task over and over until he/she can perform

well. This is not always the case in live training where there may be a time or cost factor

associated with the training that prevents practicing skills to proficiency.

c) Potential for Comprehensive, Objective Review and After Action
Reports (AARs)

The parachute trainer fielded by Systems Technology, Inc., provides solid

example of this benefit. "The instructor may freeze the simulation at any time to discuss

the progress of a jump, and then may continue or end the jump. The instructor records all

jumps for instructor and trainee review using a playback option. The playback shows the

motion as viewed by the trainee and includes a display of the trainee's toggle inputs. The

simulator evaluates completed landings. These evaluations are displayed on the

instructor's screen and can be printed to provide a report of a trainee's progress.” (Hogue,

2003) The potential for training benefits through comprehensive AARs is only limited

by the capability of the VRTE being used.

d) The Ability to Add or Remove "Stress Levels" or Battlefield
Characteristics as Needed

VRTEs allow for setting the optimal level of training for the participants,

as well as adding or removing opposing forces or background effects. This allows for

training (and thereby gaining a performance edge) in many different configurations of an

environment, a capability that most live training cannot provide in a condensed period of

time. Dr Sarkar and Terrance Tierney write of weapons system testing in VRTEs,

 8

“Battlefields are chaotic environments. Fighters often win when they are able to take

advantage of the environment and mobilize them in their favor. However, achieving a

performance edge under each particular environmental state is difficult due to finding or

recreating specific location, terrain, weather, and enemy/friendly force mix. Yet, there

has not been a cost-effective means available to change characteristics of terrain or bring

together a particular battlefield scenario. With the capability of virtually modifying a

replica of a real terrain under a particular condition with a particular force ratio with

predetermined performance abilities, one can test various conjectures, leading to a vastly

optimized weapon system. […] The synergy of simulation and virtual world has opened

an entirely new dimension for optimizing weapon systems.” (Landauer, 1998, p 131) The

quote is easily extended to encompass not only weapons systems but also overall training

of forces.

e) Provides for Unsafe or Potentially Unsafe Training to be
Conducted in a Safe Environment

VRTEs allow training to unsafe levels, allowing participants to gain

valuable skills they cannot train to in a live environment where the same training would

be fatal or unsafe. Examples include:

Nuclear, Biological, and Chemical (NBC) training – training to standards

of response time in harmful environments, based on cues from the virtual environment

Firefighting skills – virtual close quarters fire fighting environments can

be created allowing military firefighters and personnel with supplemental tasks of fire

fighting to conduct realistic, procedural training in a safe environment

f) Cost Savings

The use of VRTEs has the potential to substantially reduce training costs

overall by making users more proficient prior to live training exercises, which then

require less time and evolutions. Examples include:

• Indoor Simulated Marksmanship Trainer (ISMT) – use of the ISMT reduces

rifle range requirements, the number of re-qualifications, and the number of

rounds needed to train Marines to standards of marksmanship

 9

• Flight trainers – the use of flight trainers reduces the number of flight hours

needed in the air and enhances those hours spent by pilots in the air by

providing needed reinforcement of basic procedures and scenario responses

• Tank trainer – From March 1993 to 01 July, 2002, the Ft. Knox User has

logged 1,087,323 simulated miles driven by 36,198 M1 driver trainees and

2,878 M1A2 advanced driver trainees. The typical Training Tank costs

$155/mile to operate whereas the Tank Driver Trainers cost $5.44/simulated

mile. Based on these figures, the cost of operating the 20 trainers has been

$5,915,037. The total cost avoidance by training with the twenty TDT's is

$168,620,028 over the past 9 years and 4 months. The cost avoidance is 285%

of the total project development cost of $57M. (Tank Driver Trainers, 2003)

g) Reduced Setup Time

In comparison with live training exercises of the same size as the VRTE

exercise, exercise preparation and setup time can be reduced, allowing more time to be

spent on the training skills or on other missions.

h) Small Footprint

In comparison to the size of the area required for a training exercise and

all associated equipment, many VRTEs (particularly those that are PC-based, standalone

systems) have the advantage of taking much less space than the representative live

training.

For example, the Air Traffic Control Virtual Reality (ATCVR) air traffic

control system requires no more than a 10' x 10' x 8' area to conduct simulated tower

operations with as many as 40 aircraft in virtual patterns. The Fire Team Cognitive

Trainer (FTCT) for the Deployable Virtual Training Environment (DVTE) is designed to

be deployed for squad tactical training while aboard ship, using no more than 16 laptop

computers that, since they are networked, can be used in whatever space is advantageous

for the squad, platoon commander, and opposing forces to occupy. (see Sect. I.D.5 for

reference to both examples)

i) Large Scale Virtual Networked Training Environments

 10

VRTEs, if designed as such, allow for a large number of participants and

participation in the same training exercise by personnel in different locations. A practical

example of large scale, networked VRTE use could be emergency services training: “By

the use of computer networks, it would even be possible for military and civilian

emergency agencies to ‘virtually’ work and drill together, as might prove necessary in the

event of a terrorist attack, chemical/biological release, or other large scale disaster

situation. ‘The possibilities of this concept are endless...for improving our national

response capabilities and facilitating effective and more realistic training for those that

protect us on a daily basis.’" (Anderson, 1996)

j) Provides an Experience Level that can Potentially Accomplish
the Mission and Save Lives

All other benefits aside, the ultimate goal of training is to ensure mission

accomplishment. Additionally, in the process, preventing the loss of life is also an

important result. VRTEs can provide needed training that might otherwise not be

accomplished, leaving service members lacking in skills needed in a real

engagement/scenario; as such, the knowledge and skills one has gained by VRTE training

is directly valuable in mission accomplishment and in preventing loss of life. "One of the

biggest problems in both the military and emergency services is to expose 'rookie'

responders or low-ranking soldiers/sailors/airmen to enough 'experiences' to allow them

to function effectively in a crisis or combat situation. Historically, many injuries and even

deaths occur in both training and in their first few months or even years on the job. It is

believed by [Emergency Response & Research Institute (ERRI)] and others that by using

realistic virtual reality training that this 'experience quotient' can be rapidly increased and

unnecessary casualties prevented." (Anderson, 1996)

3. Drawbacks of Using VRTEs

There are also many potential drawbacks to using Virtual Reality Training

Environments. (VRTEs) While VRTEs can provide positive supplemental training to a

good training program, there are potential drawbacks that can seriously detract from the

benefit gained by using VRTEs, and can, in fact be detrimental to the training program in

 11

a broader sense than simply not providing solid training. All of the following drawbacks

are recognizable and can be either engineered out of the system or educated against; if

they or other drawbacks are present and not addressed, training with VRTEs will not

prove effective.

a) Lack of Realism

For VRTEs to be effective training tools, they must provide a sense of

realism, so that what the participant sees in the virtual world can be translated to training

and missions in the real world. VRTEs can lack realism for several reasons, as listed

below; the reasons listed are not exclusive, nor are they always applicable. (i.e, if training

goals require a visual familiarization of terrain, haptic feedback and other cues, such as

auditory cues, may not be needed and, as such, will not so greatly contribute to the lack

of realism)

• Lack of realistic cues -- if realistic cues (correct visual proportionality, spatially

oriented sound as needed, etc) are not provided, the user does not feel immersed

in the VRTE.

• Limited field of view -- the visual display is the user's window into the virtual

world; if it is limited, the user may not experience the immersion needed to

train effectively in the VRTE.

• Lack of realistic (if any) haptic feedback where needed -- adding to the lack of

realistic cues, haptic feedback can determine whether a user feels present, so,

where needed, its lack could add dramatically to the lack of realism.

• Limited range of motion or travel -- participants may be limited in the virtual

world from moving their head and limbs as needed or may be limited in the

locations they can move to.

• Levels of physical disability can be skewed in the VRTE -- training

environments can have a very “game” flavor to them in that there are multiple

lives, multiple hits, or other unrealistic skews that are incorrect characteristics

and create a lack of realism.

b) Requirement to Learn How to Use the System and Equipment

 12

Learning to use the system and equipment can be time-consuming,

cumbersome, and frustrating. Training that frustrates the participant is often ineffective

training, no matter how well the training was oriented to the goals. In addition, time

outside of the training evolution itself needs to be spent learning the system and

equipment prior to the training evolution commencing in order to receive effective

training; otherwise, the trainee is just spending time learning the system. The participant

must become familiar with the input setup for devices such as keyboard, joystick, or any

other non-intuitive input device and become orientated with the information being

provided, such as HMD display or screen display.

c) VRTEs can Train Poor or Incorrect Practices

Training button pushes or other non-realistic inputs in place of live actions

that would be executed in the real world creates the false impression of how to perform

the given task in the real world--the VRTE can train users, incorrectly, to push a button in

a live environment where a real action is necessary. For example, if a user is immersed in

a VRTE using a head-mounted display, yet uses a button to aim in with the sights of a

weapon, that same participant may hesitate momentarily in sighting in his weapon in a

live environment, as he is mentally seeking the same button press. While it is true that

VRTEs can train poor or incorrect practices, it needs to be stated that live training

exercises have as much potential; i.e., teaching medical personnel how to deal with

"cherry pickers" (simulated casualties) in any way other than how they would deal with

real casualties promotes incorrect practices that could cost lives. This drawback is present

and must be guarded against in all training environments, not only in VRTEs.

d) VRTEs can Neglect Procedures that Lead to Lack of Ability

Not only can VRTEs train poor or incorrect procedures, but--just as

detrimental--VRTEs can also neglect to train necessary steps or tasks required to

accomplish a mission. For example, if the VRTE is training flight runup procedures that

leave out a step that would be required in the real world, the pilot is taught to neglect that

step. Neglecting steps in training causes gaps in task performance during mission

execution that can cause mission failure.

 13

e) Frustration can Lead to Lack of Desire to Train

VRTEs that are hard to use and navigate create frustration for the user.

Frustration with a training environment, virtual or otherwise, erodes morale and leads to a

lack of desire to train. Even if the application is easy to use, if the user does not feel an

adequate sense of immersion and/or presence, the user will "feel" as though there is

something missing and will become frustrated from trying to work in an environment that

he/she does not feel a part of.

f) Negative Impacts

There are several distinct effects of VRTEs that can have negative impacts

on the participant as well as on training. These include:

• Cybersickness/Simulator sickness -- A study conducted on the effects of and

propensity for simulator sickness in virtual training environments reports,

"There was an inverse relationship between simulator sickness and amount

learned in the synthetic environment. Soldiers who reported greater levels of

discomfort tended to learn less […] than their peers who experienced less

simulator sickness." (Johnson, 1997, p. 52)

• Neck injury -- specifically related to HMD use or use of any other head-

mounted equipment, neck injuries can occur when participants wear excessively

heavy headgear or headgear that is not balanced (pulls the head down in one

direction) for lengths of time or while exerting the neck muscles.

• Lack of physical exertion gained from live training -- Some live training

exercises aim at the additional goal of physical fitness through strength or

endurance training. Extensive use of VRTEs that do not provide the same

physical exercise that their live-training counterparts provide can lead to

erosion of the level of physical fitness that personnel would otherwise maintain.

The negative impact that these effects can have creates frustration and a

lack of desire to train, which is overall detrimental to mission accomplishment.

 14

4. Prospective Military Training Applications for VRTEs

“One of the earliest uses of simulators in a military environment was the flight

trainers built by the Link Company in the late 1920's and 1930's. These trainers looked

like sawed-off coffins mounted on a pedestal, and were used to teach instrument flying.

The darkness inside the trainer cockpit, the realistic readings on the instrument panel, and

the motion of the trainer on the pedestal combined to produce a sensation similar to

actually flying on instruments at night. The Link trainers were very effective tools for

their intended purpose, teaching thousands of pilots the night flying skills they needed

before and during World War II.” (Baumann, 1993)

What we have to remember when considering whether military training exercises

make suitable platforms for virtual reality applications is to look at the goals of the

training and see whether or not we can achieve those training goals correctly through

virtual reality. If the answer is 'no', then to create a VRTE for a set of training goals we

cannot hope to reach through virtual tools creates nothing more than a meaningless video

game at best, and at worst, detriments unit training. If the answer is 'yes', then we have

the potential to supplement training with VRTE technology and reward the military with

better cognition, better procedural knowledge, or better decision-making skills.

The following are applications where VRTEs can, and in some cases do,

supplement training to achieve training goals:

a) Equipment Familiarity or Usage Procedures

VRTEs can familiarize personnel with equipment or teach them how to

use that equipment prior to ever using the real equipment. This promotes safety, as

personnel will already be familiar with safety features and procedures prior to use of the

equipment. It also enhances training and mission accomplishment by giving personnel

additional experience that they would otherwise not receive. Some examples of

equipment that can be created in VRTEs for personnel usage and familiarization include:

• Aircraft -- fixed wing and rotary wing

 15

• Vehicles -- The 7 1/2 ton Medium Tactical Vehicle Replacement (MTVR) has a

simulation designed for driver training; Engineer Heavy Equipment (HE) can

be simulated to familiarize or train the user

• Utility equipment -- generators and shipboard equipment

• Weapons -- small arms and systems

• Night vision equipment -- head mounted and weapons mounted

b) Procedural learning of Standard Operating Procedures (SOPs)

VRTEs are capable of training SOPs by requiring step-by-step procedures

to be performed in order to accomplish the mission. Examples include learning rules of

engagement (ROE), combat SOPs, radio procedures, and small unit tactics. The

advantage to using VRTEs for this procedural type learning is the ability to train as many

times as is needed to gain proficiency, and to be able to stop or rewind the scenario to get

a macro look at what is being done correctly or incorrectly.

c) Navigation Skills

VRTEs can assist in learning dead reckoning skills or equipment (i.e.,

compass) related navigational skills. VRTEs can provide an overhead view of the correct

path and of the path taken by the user, helping him to understand where he made

mistakes. They can also provide current hints to the user while navigating in the virtual

environment, speeding the learning process by allowing the user to learn as he moves

through the environment, not just afterward. The computer environment of a VRTE is

unfailing in its ability to determine what path should have been taken and what path was

taken, making it a useful learning tool. In addition, navigation can be performed on

virtual non-flat terrain, with visual cues and hints, to show the user what a straight

compass heading over terrain really looks like.

d) Terrain Appreciation/Environmental Familiarization

VRTEs are also useful in learning terrain features in general, from a visual

standpoint. What is unique about using VRTEs for viewing terrain features is that the

user can detach himself from the environment and "fly" around, viewing a terrain feature

from every angle in order to better understand and appreciate the terrain. This type of

 16

training lends itself to training for real missions; VRTEs can be used as virtual sand

tables for preparing for a training exercise or a mission; they can be used to provide

commanders with reconnaissance of an area so that he can direct training or mission; and

they can be used to provide intelligence analysts with information with which to train and

educate the unit on the layout of areas, countries, regions, etc.

e) Decision Making Skills Training

VRTEs can be used to provide a realistic environment and scenario

designed to train personnel in decision-making skills. Scenarios can be designed where

the leader must act in a timely manner while the environment and scenario continues to

change, and where the decisions made within the virtual environment affect the

environment and the course of actions. Such decision making training environments can

benefit individual cognition, judgment, and leadership capabilities.

5. Examples of Current VRTE Military Applications

There are many examples of current applications of virtual training environments

being used or developed. For reasons stated already, the subject has proven to be the

focus of several efforts to introduce more training, lower-cost training, and training that

makes real operations safer and more effective. The following list of examples is far

from complete, but shows some of the implementation and research currently or recently

conducted.

a) Combined Arms Tactical Trainer (CATT)

The US Army's simulation, training and instrumentation command

(STRICOM) has been developing simulation systems for years. SIMNET, the Army’s

simulation networked environment brought together many individual simulations over

great distance to provide a virtual battlefield in which participants could actively train

with other participants, and in which commanders could lead large-scale battlefield units.

The successor to SIMNET is the Combined Arms Tactical Trainer (CATT) family of

simulation trainers. These include trainers in the areas of ground, air, command, and

 17

support. The prime contractor the Army uses for the CATT family of simulators is

Lockheed Martin.

Figure 1. Combined Arms Tactical Trainer (CATT) (From Ref.1)

The following are examples of CATT modules:

• Close Combat Tactical Trainer (CCTT)

The Close Combat Tactical Trainer (CCTT) system is the centerpiece of

the CATT family. It is a fully distributed interactive simulation system and consists of a

networked array of vehicle trainers. The vehicle trainers are members of the Ground or

Air Combat Tactical Trainer families of simulators. The compilation of simulators into a

single distributed system produces a synthetic battlefield on which participants can do

unit training. Semi-automated forces can be added into the synthetic battlefield as

aggressors or friendly units.

1 http://www-leav.army.mil/nsc/tsm/ and http://www.ets-news.com/catt1.html

 18

Figure 2. Close Combat Tactical Trainer (CCTT) (From Ref.2)

• The Family of Ground Combat Tactical Trainers (GCTT)

The Ground Combat Tactical Trainers are a family of virtual trainers

covering Armor, Infantry, Field Artillery, Air Defense and Combat Engineer systems.

GCTT trainers includes conduct of fire trainers, driver trainers, and maintenance trainers,

as well as any other trainers needed for ground combat systems. These systems are

standalone virtual training systems, though some are capable of being integrated into the

CCTT and CATT environments. Currently, GCTT includes the following systems:

o Tank Driver Trainers (M1 and M1A2 TDT)

o Advanced Gunnery Training System (AGTS)

o Abrams Full Crew Interactive Simulation Trainer XXI (AFIST

XXI)

o M1/M1A2/M1A2 SEP Tank Driver Trainers (TDT)

o M1A2/SEP Maintenance Training System (MTS)

o M2A3 Bradley Maintenance Training System (MTS)

o Basic Electronic Maintenance Trainer (BEMT)

2 http://orlando.drc.com/Whats_New.htm, http://www.amso.army.mil/smart/documents/ref-guide/sec-

VI/tools.htm, and http://www.ets-news.com/virtual.htm,

 19

o Multiple Launch Rocket System Maintenance Trainer System

(MLRS MTS)

o Fire Support Combined Arms Tactical Trainer (FSCATT)

o Guard Unit Armory Device Full-Crew Interactive Simulation

Trainer (GUARDFIST II)

o Forward Observer Exercise Simulation (FOXS)

o Stryker Training Devices

o Engagement Skills Trainer 2000 (EST 2000)

o Wolverine Driver Mission Trainer (DMT)

o Linebacker Table Top Trainer

o Avenger Table Top Trainer

o Advanced Concept Research Tools (ACRT)

o Recognition Of Combat Vehicles (ROCV)

b) Deployable Virtual Training Environment by Coalescent
Technologies Corporation

The Deployable Virtual Training Environment (DVTE) is a distributed

interactive system designed to provide a tactical 3D simulation environment for

cognitive, procedural, and tactical training at the individual and unit level.

 “Distributed Interactive Simulation is being developed for the Marine

Air/Ground Task Force (MAGTF) which specifically includes Air Support, Light

Armored Vehicles, Infantry, and Forward Observers with a constructive virtual

simulation using the MAGTF Federated Object Model (FOM) and High Level

Architecture (HLA).” (Deployable, 2003)

The Deployable Virtual Training Environment (DVTE) allows for tactical

and cognitive training in an interactive virtual environment where each entity connected

to the environment can see and interact with each other entity; i.e., the forward observer

 20

will be able to interact with artillery and air support components to bring fires to the

target; dismounted infantry will be able to interact with Amphibious Assault Vehicle

(AAV) support to reach the beachhead or press forward from the beachhead.

The distributed interactivity of the system makes it an excellent means to

provide combined arms training and, through the use of High Level Architecture (HLA),

allows the system to connect with other military simulations, creating an environment for

joint service training opportunities in a virtual environment.

Figure 3. Deployable Virtual Training Environment (DVTE) (From Ref.3)

• Fire Team Cognitive Trainer

The Fire Team Cognitive Trainer(FTCT) is a Virtual Battlefield System-

1™ component to DVTE (VBS1™ is created by Bohemia Interactive Studio). FTCT

trains Marines, particularly small unit leaders, tactical judgment, situational awareness,

and decision-making skills, in order to improve small unit effectiveness on the battlefield.

FTCT is fully interactive in a 3D training environment, and allows the participant

flexibility of action. Small units can also practice skills and gain or recall procedural

3 http://www.ctcorp.com/performance15.html and http://www.tecom.usmc.mil/techdiv/dvtepaper3.htm

 21

knowledge through tactical simulation. FTCT has the ability to provide aggressor

entities, in either computer controlled or human participant controlled form.

FTCT is a Virtual Battlefield System-1™ simulation (VBS1™ is created

by Bohemia Interactive Studio). VBS1™ is a simulation engine which has the dynamic

capability of being able to load user-defined terrain and surroundings, and the flexibility

of being able to change the environment and its conditions at any time.

VBS1™ offers realistic battlefield simulations and the ability to operate a
myriad of land, sea and air vehicles across vast outdoor terrains.
Instructors may create virtually any imaginable combat scenario and then
engage the simulation from multiple viewpoints. The advanced squad-
management system enables participants to efficiently issue orders to
squad members as well as coordinate assaults. VBS1™ allows free-play
within scenario-based training missions. It also incorporates real-time
simulation of wind, rain, fog, clouds, time-of-day, sunrise and sunset, and
tides.

VBS1™ may be used to teach doctrine, tactics, techniques, and procedures
of squad and platoon offensive, defensive, and patrolling operations.
VBS1™ delivers a synthetic environment for the practical exercise in the
application of the leadership and organizational behavior skills required
for the successful execution of small dismounted infantry unit missions.
(Tactical, 2003)

Figure 4. Fire Team Cognitive Trainer (FTCT) (From Ref.4)

4 http://www.flashpoint1985.com/press/vbs1.html and

http://www.tecom.usmc.mil/techdiv/ITK/VBS1/VBS1Draft.htm

 22

c) Shiphandling Simulation Training by Marine Safety
International

Marine Safety International (MSI) provides shiphandling training to U.S.

Navy personnel at MSI Newport, Rhode Island, MSI Norfolk, Virginia, and MSI San

Diego, California. Training is completed to real-world standards on tasks such as

mooring, anchoring, buoy mooring, underway replenishment, man-overboard, and

emergency procedures. Training is accomplished at a procedural level of learning the

skills necessary to command or pilot a ship through various circumstances. While there

are ten standard training exercises that a ship can fashion training around for its

personnel, the shiphandling trainer is versatile and flexible in its training capabilities.

Training is accomplished in a realistic shipboard environment with all ship

hardware looking and acting as it would aboard a real vessel. This provides the level of

immersion and presence necessary for personnel to get realistic training on full real-world

tasks, without the loss of training as to which shipboard components are needed for each

task. Participants are provided a full panoramic view from inside the bridge and a partial

panoramic view from the bridge wing.

The simulators include the ability to train the full bridge and CIC/CDC
team including lookouts, bearing takers, helmsman and navigators as well
as the OOD and conning officer. Shiphandling training at MSI Newport
consists of a set curriculum of basic through advanced evolutions with the
primary focus on mooring and unmooring from a pier, underway
replenishment and emergency shiphandling. (Shiphandling)

Figure 5. MSI Shiphandling Simulator (From Ref.5)
5 http://www.marinesafety.com/usn.html

±.J.^T

 23

d) Air Traffic Control Virtual Reality (ATCVR) Training System
{delivered by Southwest Research Institute (SwRI)}

Air traffic controller certification requires extended intense training.

Because ensuring the safety of all persons is such a critical factor to air traffic control

personnel, many hours of training and qualification are necessary to ensure that air traffic

safety is upheld. The Air Force has seen the need for virtual training environment

capabilities in order to certify personnel and maintain currency in air traffic control

procedures proficiency. The Air Education Training Command (AETC) is conducting

studies in evaluating the Air Traffic Control Virtual Reality (ATCVR) for just that

purpose. The ATCVR is a development of Southwest Research Institute (SwRI) and is

currently being tested at Randolph, Luke, Vance, and Altus Air Force Bases.

ATCVR is an important product to the training of air traffic control

personnel because it provides more hours of training in a safe environment, with room for

errors and inspection of those errors during after-action reviews, prior to personnel

becoming responsible for the safety of real lives and aircraft. Whereas live training of

personnel is time, resource, and man-hour intensive, ATCVR training requires two

personal computers, a head mounted display, and an instructor in order to conduct

individual training. ATCVR provides the flexibility to train personnel at any time and on

any conditions, allowing the repetition of training on conditions that personnel find

stressful or difficult.

The goal of the ATCVR simulator is to familiarize a trainee with the local
airfield environment, traffic patterns, procedures and radio calls used in
the tower. The system accomplishes this by simulating base-specific
traffic patterns using instructor-selected flight plans and aircraft in a
simulated environment closely matching the airfield. The ATCVR system
provides a 360-degree view that immerses the trainee in a realistic tower
environment allowing the trainee to become familiar with the local tower
prior to working with live traffic. (Fisher, 2001)

 24

Figure 6. Air Traffic Control Virtual Reality (ATCVR) (From Ref.6)

e) Helicopter Navigation Studies at the Naval Postgraduate School

Helicopter Terrain Navigation Training Using A Wide Field Of View

Desktop Virtual Environment, by CDR Joseph A. Sullivan (USN) – “Helicopter terrain

navigation is a unique task -- training for this task presents unique challenges. Current

training methods rely on dated technology and inadequately prepare pilots for real-world

missions. Improved training specifically tailored to address the unique needs of the

helicopter community that capitalizes on recent improvements in desktop virtual

environment (VE) technology could substantially improve the training process and

reduce training costs.”

An Interactive Virtual Environment For Training Map-Reading Skill In

Helicopter Pilots by Capt Tim McClean (USMC) -- Currently, Student Naval Aviators

are trained to interpret 1:50,000 scale contour maps by watching VHS videotapes. These

tapes show a helicopter moving about twice its normal speed over desert terrain. The

helicopter does not stop until the tape is over, hence, the training evolution quickly

becomes useless because students usually make mistakes during the first minute of the

tape and are unable to recover or to learn from those mistakes. Based on a previous study

6 http://www.tspi.swri.org/pub/2001iats_atcvr.htm

 25

at the Naval Postgraduate School, a training system that utilizes virtual environment

technology was developed. This desktop system was fielded at Helicopter Antisubmarine

Squadron 10 (HS-10) for experimentation. Results of this experiment indicate that

student pilots who received VE training performed the navigation task better in the

helicopter than students who received only conventional training. Also, an IT-21 Wintel

based computer is capable of rendering a graphically intensive multi-monitor application

at frame rates suitable for training.”

Exploring a Chromakeyed Augmented Virtual Environment (ChrAVE) for

Viability as an Embedded Training System for Military Helicopters by Maj Mark

Lennerton (USMC) – “The ChrAVE mixed reality helicopter training environment was

created in an effort to provide an immersive and familiar environment for training pilots

embarked aboard ship during deployment. The system is designed to exercise pilot skills

as rigorously as real flight operations would, during periods when live flight hours are not

available. Computer-generated terrain provides the pilot's view of the outside, while a

camera-generated view of the cockpit simulation provides the pilot's view of the cockpit

interior and instrumentation.” (Sullivan, 2003)

E. DEVELOPMENT OF SOFTWARE AS A COMMODITY

The focus will now shift from reasons for using VR technology in military

applications to methods of developing these VR training capabilities at lower cost.

Hardware has already become a commoditized item, in which the user can feel relatively

comfortable choosing whatever brand of hardware he likes (and that can be bought at the

best price); the customer knows that, across the spectrum, a hardware item from Brand A

will perform the same as a similar hardware item from any Brand B. This

commoditization of hardware has a) lowered the general cost of hardware as a

commodity, and b) created a common functionality expected and delivered from similar

hardware.

Software has, for some time, been at a stage where capability was based on the

authoring company of the software; different companies would write dramatically

 26

different software, regardless of the similarities in application use and need. Until

recently, standardization of software appears to have been regarded as unnecessary.

However, the population of computer users has dramatically increased over the last ten

years, and those who are using computer applications tend to know what they want and

what they want it to look like. The average household user knows how to send mail

using Microsoft Outlook®7 and does not even want to look at anything that appears

different.

Because this user opinion is becoming more of a force in the development of new

software in areas that are already well developed enough to elicit user opinion, software

is now at a point where functionality is becoming more standardized across similar

software products. Many software concepts have already been tackled and effectively

implemented, allowing for the creation of software patterns. These patterns find

themselves in the form of reusable building blocks that can be put together to create

generic architecture styles that are optimized with regard to functionality and reusability.

What this effectively creates is the ability to commoditize software, much like was done

with hardware.

In the field of virtual reality simulation engine software, the user—in this case,

the application programmer—has generally seen or worked with several packages, and

has seen similarities between them. Many new simulation engines are being developed,

and these are incorporating a standardized set of functionality. The differences among

the functionalities of these simulation engines is becoming smaller, making cost and

performance the driving factors behind use of one engine over another.

1. Simulation Engines

a) Basic Overview

 Virtual reality applications can be extremely complex to write as

independent applications; many different functionalities are needed in order to provide a

full, rich set of features that capitalize on the latest developments in hardware to provide

the user with as immersive and realistic of an environment as possible. Writing a single

7 Microsoft Outlook® is a registered trademark of the Microsoft Corporation;
http://www.microsoft.com.

 27

application that encompasses all of those functionalities would be time and resource

intensive, and would violate the principles of code reuse, flexibility, and extensibility

which allow programming projects the ability to adapt to a particular need and to save

time through the use of existing resources.

 A better solution is to bring together a compilation of all needed

functionalities, taking advantage of encapsulated, reusable code in order to create a

modular, extensible architecture that is as rich in capability as possible while also being

as optimized in performance as possible. While a simulation engine necessarily has to be

general enough in architecture to accommodate a wide variety, size, and scope of

applications, because optimal code is implemented into the engine, it sacrifices little

optimization. The end product is a software architecture that is optimized, scalable to all

applications it is designed to accommodate, and rich in functionality.

b) Commonalities List

• Scene graph

At the heart of every virtual reality simulation engine, whether its purpose

is to create simulations, training applications, or games, is a scene graph that takes care of

the basic functions needed to take the application state and create a rasterized picture on a

viewing screen. A scene graph, in keeping with its name, is an acyclic, directed graph, or

a ‘tree’. The graph has a root node that contains nodes representing the 3D visible

objects, as well as all data needed to render the 3D scene, such as lights, textures, and

states. A scene graph takes the place of voluminous code, which would otherwise need

to be written for every application to draw the scene at every frame. The scene graph

follows at least the following three basic principles of functionality.

The first principle that the scene graph follows is that it optimizes scene

rendering. A scene rendering program that renders every element of the scene on every

frame is extremely inefficient. The scene comprises all elements that can be drawn or the

information to influence those items being drawn. Much of the scene is not within the

viewing frustum at any one point in time; the scene graph takes advantage of this fact by

determining which elements are not in the viewing frustum and culling those items,

 28

preventing the rendering pipeline from having to waste cycles determining how to render

them when they will not be rendered anyway. Additionally, of those items within the

visible frustum, some are at such a perspective virtual distance from the observer’s

viewpoint as to show very little visual detail. The scene graph takes advantage of both of

these points.

The second principle of scene graphs is portability. It is no simple task for

the programmer writing the individual application to bring together all of the tools

needed to make a scene rendering program portable across various platforms. The scene

graph, however, can be written to take advantage of—possibly at runtime—various

packages written to allow for cross-platform capabilities.

The third principle that scene graphs adhere to is scalability. An

application that contains its own scene rendering functionality will generally be scaled

specifically for that application; it would be expensive, in terms of resources, to write

every application with the ability to handle an arbitrary number of entities. This is where

an individual application which includes its own rendering code can be more optimally

programmed than if the application made use of a scene graph; however, the tradeoff is

that using a scene graph, which is written generically for an arbitrary number of entities,

includes the optimizations written into a scene graph which would otherwise be time-

consuming to implement into individual applications.

The scene graph is the foundation component to the simulation engine,

and it provides object rendering and manipulation capabilities basic to the generation of a

visible scene. Objects are made of pieces of geometry, which are made of triangle faces,

which contain vertices. The scene graph contains and keeps track of all of the pieces of

those objects so that they can be efficiently rendered in the scene as the application needs.

• Effects system

In general virtual reality applications use effects as a means to create a

realistic, immersive environment; eye candy equates to realism, and, so, becomes an

important factor to the application. Environmental conditions such as fog, rain, wind, sun

make applications seem more believable and enhance the user’s experience accordingly.

 29

Particle generation is an import capability of an effects system in a simulation engine, as

it can be used for a diverse array of applications, such as smoke, water spray, or engine

exhaust. The effects system in a simulation engine can effectively convey a sense of

realism to the application end-user.

• Physics engine

If a simulation involves realistic physical movement of objects in the

scene, then a physics API will need to be incorporated into the engine. In the absence of

physics computation, objects move in a sterile method about the scene, moving discretely

in the direction they are told and for as far as they are expected. Providing visual cues

that objects have real, physical properties involves the physical interaction between

objects, such as a ball that rolls off of a table and bounces on the floor. To provide this

interaction, computation needs to be done to account for where objects are in the world

and what forces are acting on them at any given time.

• Character animation

The addition of character animation to an application adds more than what

seems apparent. The geometry of a model is maintained and rendered by the scene

graph, but many other components of an animated character are not. The animation of

characters often involves key framing, which is a means by which, in local reference, the

vertices of the model move from one frame to the next in order to produce local

movement of part or all of the model. This differs from global movement of an object in

the scene in that objects moving in the scene maintain the same local shape—all vertices

are moved as one. Character animation essentially involves deformation of the model

from one state to another, over a series of steps (key frames). For efficiency, these key

frames do not generally maintain the state of every vertex in every key frame; that would

be resource intensive. Character animation APIs find a way to store this information

efficiently, such as by maintaining only the change in vertices from one key frame to the

next, which allows for the efficient rendering of objects in the scene that can not only

move around the scene, but can be moving locally as well; this allows for the creation of

human characters, for instance, who not only move around the scene (stiff, as though

 30

figurines), but can move (or deform) as needed to look as though they are performing

actions such as walking, running, or waving.

• Game networking

Simulations do not generally involve single entities moving around a

scene by themselves; training simulations that are made to train small units, for example,

need to be able to put the entire unit in the simulation at one time. This involves a

networking capability so that each entity can move around the scene and interact in

whatever manner necessary with all other entities.

• Artificial Intelligence for agents

When more participants are needed in a simulation than are available, or

when the hardware does not support as many participants in an application as are needed,

additional participants can often be created through the use of intelligent agents, or bots.

Bots can provide opposing force simulation capabilities if the human participants in a

simulation are to all work together as a unit; training a small unit to react to an ambush

does not necessarily require that real persons simulate the opposing force lying in wait, as

long as that opposing force can behave in an intelligent manner expected of them. Often

there can be simple or repetitive tasks that provide no training value but need to be

performed by an entity in the application; agents can perform those tasks. This serves to

provide needed actions or interactions in an application without the expense of human

resources.

• Sound, including spatial/positional sound

Sound in virtual reality applications can be a key factor to immersion;

sound can also provide information in a virtual environment that would be difficult to

receive by other means. Additionally, correct training transfer of procedures and

techniques may involve sound, such as training applications in which air traffic

controllers listen to pattern aircraft traffic over radio. The spatialization of some sounds

is just as important, as it can provide audio cues that provide the user with important

information; the fire team member who hears the footsteps of the next member of his

 31

team right behind him does not need to turn around to know that the fire team member is

right there, and this cue needs to be the same in the virtual world as it would be in reality.

• Voice over IP

In addition to sound from other objects in the environment, it can be

important to provide voice audio cues, as well. In applications where team members are

operating together, in order to provide a realistic, immersive environment, and to prevent

the artificial situation of typing voice commands, Voice Over IP (VOIP) capability can

also be important. Simulation engines can integrate VOIP so that it can be used, if

needed, or left out completely, as it can be very resource intensive.

• Level editing tools

The process of placing objects and editing the states of all objects in a

scene can be time consuming and overwhelming, especially for a large-scale application

that involves many entities in the scene. Visual representation of where entities are, and

the ability to make modifications, additions, and deletions to entities and to the scene can

save the application programmer many tedious hours carefully manipulating the scene in

order to put entities in the right place. Additionally, configurations can be created

visually and saved as configurations for future applications, as well, making level editing

tools not only time saving for current applications but for multiple applications.

• Graphical User Interface – Front-end

In addition to the graphical method of creating scenes, the addition of a

graphical user interface from which to create front-end interfaces (i.e., introduction

screens, main and auxiliary menus, end-of-level screens, help screens, etc) can also save

time. In many instances, the application programmer does not even need to understand

lower level windowing or Graphical User Interface (GUI) programming—this is handled

through the GUI API in the engine.

• Ability to make user modifications (called Mods)

Once an application is built on a simulation engine, the ability to modify

that application, as opposed to creating another application, can save time and resources

 32

in the development of a similar application. In many instance of training, the scenario

may remain the same, while all that is needed is a different environment. Or the reverse

could hold true, such that the same environment could be used for a different scenario,

and the only changes needed are a different rule set for handling interactions in the

application. In these and many other cases, the ability to create mods, or applications

which are nothing more than modifications of similar applications, can be very useful and

efficient.

• Scripting ability

In addition to providing the ability to make mods, some engines also

provide scripting language support, so that a higher abstraction can be maintained and

used by the application programmer in the creation of new application. This not only

allows the application programmer an easier interface to the engine, but can also be used

to ensure that the programmer using the scripting language does not create buggy code,

by keeping the lower level code out of reach.

2. Commercial Off-the Shelf Software (COTS) vs. Open-Source software

In determining whether to use open-source software or to contract or buy

commercial software, an important factor is the maturity of the particular open-source

software versus the commercial off-the-shelf software (COTS). It makes sense to say

that the DoD should use the best-value software products that meets its needs, whether

those products are open-source or commercial. Open source software may be cheaper,

but if it is not supported well enough for the DoD to effectively use the software and the

DoD determines that supporting the software itself would be too costly, then it is not the

best product.

a) Commoditization and Interoperability

However, the DoD is not an island; interoperability among services and

with the commercial world is a key factor to the DoD’s ability to do business. If software

is not yet commoditized, one of the problems in choosing an open-source software

solution is that the most interoperable solution is most likely the stable and well-

 33

established commercial product in that technology, not the open-source solution. Lack of

interoperability costs money to overcome, avoid, or circumvent, and, thus, removes the

benefits obtained through use of open-source software.

Eventually, however, most software technologies (web browser, office

suite, 3d simulation engine tools, etc) reach a level of commoditization, at which point all

products, both commercial and open-source, should provide the same basic functionality.

Once a software technology has been commoditized, and interoperability is no longer a

roadblock, mature open-source software can save the DoD money while allowing the

flexibility to modify and maintain software as necessary. Certainly, in the specific

application technology of simulation and game engines, commoditization has occurred.

The user—the application programmer who will use the engine—can choose from a

variety of options, some commercial and some open-source, and be reasonably assured

that they will all provide the same basic services in the same basic manner. Applications

created on one engine, will look much the same as, and will interact with, applications

created on another. According to Dollner and Hinrichs, “Scene graphs are ubiquitous:

most high-level graphics toolkits provide a scene graph application programming

interface (API) to model 3D scenes and to program 3D applications. […] The generalized

scene graph supports application development on top of different, independent rendering

systems, integrates seamlessly rendering techniques that require multipass rendering, and

facilitates declarative scene modeling.” (Dollner and Hinrichs)

b) Cost Factor

 Shifting to an open-source alternative to commercial 3d simulation

engines can save the DoD money by removing expensive software license fees. It is true

that hidden costs exist in terms of having personnel capable of maintaining open-source

applications, but, in reality, the DoD currently receives contracted support for the

commercial visual simulation software packages it uses; the same type of contracted

support can be established for most well-developed and stable open-source solutions,

while still not paying for software costs. Even with a contract for support, most open-

source solutions would be less costly than the proprietary alternative.

 34

Multigen-Paradigm Vega®8 costs about seven thousand dollars for a

single development license (on one computer), and about another thousand dollars for the

runtime license needed for that same computer to be able to run Vega applications. That

cost covers the basic license, but does not include the licenses—both developer and

runtime—for any of the additional packages that provide functionality not found in the

basic package, such as night vision or special effects software. In contrast to the expense

of Vega, which costs a fee per computer developed and run on, other commercial

engines, such as the Unreal® engine, charge a large enough fee up front for unlimited

development and an annual service charge as well. In contrast to all of these fees, the

source code for OpenSceneGraph can be downloaded for free, and a developer support

userlist is available, as is paid development consulting by OpenSceneGraph foundation

members.

c) Software Lock-in

In determining whether open-source software breaks the lock-in mode

established by buying commercial software, the question must be asked, “Can we replace

this choice with another and still have the same functionality and usability?” Because

open-source choices can answer yes to this question, lock-in is removed by moving to

OpenSceneGraph, or any other open-source alternative. Even in the absence of

commercial alternatives, alternative software can be developed to replace existing

software. Additional functionality needed can be added to the open-source solution; in

fact, the flexibility exists to either add functionality using organizational man-hours or to

contract programming services, still at lower cost than to purchase commercial

alternatives. An added benefit to this open-source architecture-type solution is that if

there are better-value commercial products that can replace part of the open-source

solution, (in the case of OpenSceneGraph, a best-value commercial physics engine), the

best-value pieces can be integrated into the open-source architecture.

While open-source does remove the lock-in barrier, it needs to be

considered carefully. There are legacy systems in DoD software for which code is

available, but for which the man-hours in maintaining or upgrading the software is

8 Vega® is a registered trademark of Multigen-Paradigm; http://www.multigen.com/.

 35

prohibitive. There are hidden dangers of backing into a corner from which the solution is

ultimately more costly than having stayed with a commercial mainstream product. This

goes to the issue of maintaining the best-value solution. Certainly, because open-source

removes the lock-in barrier and poses a good-value alternative, it forces commercial

vendors to make a better product.

F. SPECIFICATION OF SOFTWARE ENGINE FUNCTIONALITY

1. Superset of Software Engine Modules

Modules that are desirable in current commercial game and virtual environment

simulation engines grow at a rapid rate. New technology is constantly driving the

addition of new features into the engines of today. Many of those features—in addition

to the basic scene graph capabilities—are included in the following list:

• Effects system

• Physics engine

• Character animation

• Game networking

• Scripting ability

• Artificial Intelligence for agents

• Sound, including spatial/positional sound

• Voice over IP

• Level editing tools

• Graphical User Interface – Front-end

• Ability to make user modifications (called Mods)

2. Modules Covered in this Thesis

Chapter II of this work discusses the modules that the authors added to the libGF

architecture. These are not the only additions made by the authors, but are the largest and

most significant in impact, and need to be discussed in detail so as to provide not only an

understanding of the motivation behind adding these modules to the libGF architecture,

 36

but also the method by which they were implemented as well as their application. This

provides the reader with, first, an understanding of how to create similar modules, how to

add similar modules into similar architectures, and how to change the module itself

within the libGF architecture, and, second, how to use the described modules in new

applications. The reader is reminded that a libGF Quick-Start Users Manual can be

found in Appendix A.

The modules discussed in Chapter II include:

• Character animation

• XML read/write capability

• Agents

• Networking

• Physics

 37

II. INPUT IMPLEMENTATION

A. CHARACTER ANIMATION

1. Motivation

a) Introduction - What is Character Animation

Character animation is defined as applying motion to an inanimate or

modeled character to express emotion and/or behavior. This can be done on anything

from something as simple as paper and pencil to state of the art computers hardware.

Today, computers are used to a great extent to increase the realism, speed and range of

animations. Character animation has found its way into everything from games to virtual

environments to movies. But, it wasn't always that way. In investigating the process of

character animation, it’s important to take a brief look at the history of animation.

b) History of Character Animation (Pre-Computers to Present)

Man has strived to capture and express motion in all types of art forms

since the beginning of time. The early cave man tried to represent the animation of the

hunt for food on the walls of their dwellings. The Egyptians drew extensive pictures of

the pharaohs in pyramids trying to express different forms of motion, one example being

the drawings of men in different wrestling stances on panels found from circa 2000 B.C.

Inventions in the early 1800's showed man's understanding of the principle

of animation called persistence of vision. Paul Roget's invention, the thaumatrope,

demonstrated how images are retained for a duration of time by twirling a disc with an

image of a bird on one side and an empty cage on the other. When spun, the two images

were combined to show an image of a bird in the cage - a good example of persistence of

vision. Additional inventions by Joseph Plateau and Pierre Desvignes helped to increase

man's understanding of animation and helped pave the way for what animation has

become today.

Starting in the 20th century, significant efforts started to emerge in the

field of character animation. In the early 1910's, Winsor McKay started his work on

single person animated films and in 1914 he finished work on "Gertie the Dinosaur." This

 38

film along with his other work in the field of animation earned him the title of "father of

the animated cartoon."

About the same timeframe, animation studios started cropping up and

work in animation strayed away from being done by a single person and towards the

"streamlined, assembly-line process in the best Henry Ford tradition." (Crandon, 1999)

Early animation work that appeared from around the 1920's on, included:

• Felix the Cat - created by Otto Messmer in 1919

• Mickey Mouse - Walt Disney Studio in 1928

• Looney Tunes - Warner Bros. in 1930

• Daffy Duck - Warner Bros. in 1937

• Porky the Pig - Warner Bros. in 1938

• Snow White and the Seven Dwarfs - Walt Disney Studio in 1937

• Pinocchio - Walt Disney Studio in 1940

A lot of these animations were accomplished by drawing individual cels

and were plagued with somewhat unrealistic looking character movements. Because of

this, Disney went towards tracing animations over film footage to obtain more realistic

animation for its film Snow White. In the 1970's, as computers became more capable,

animations started to be accomplished on the computer vice by hand.

Starting in about the 1980's, the use of motion capture was looked at for

creating more realistic character motion. Notable work in the early work with motion

capture included:

• Tom Calvert used potentiometers to drive computer characters (early 1980's)

• Optical tracking systems appeared - Op-Eye and SelSpot (early 1980's)

• Graphical Marionette showed the "scripting-by-enactment" technique - MIT

(1983)

 39

• Mike the Talking Head demonstrated the ability to control facial movements -

Silicon Graphics (1988)

• Waldo C. Graphic: a face controlled by an 8D mechanical arm (1988)

• PDI developed an "exoskeleton" system for tracking upper body movements

• Dozo created by Kleiser-Walczak using optical motion capture system (1989)

• Face Waldo, which allowed real-time performances of Mario (1992)

• Acclaim demonstrated two person animation completely done by motion

capture (1993 SIGGRAPH)

Since the start of animation being generated via computer, the amount of

work being animated has continued to grow by leaps and bounds and the quality has

become extraordinary. It is approaching the time when computer generated characters

will no longer be distinguishable from real characters.

c) The Principles of Animating a Character

Before looking at the process of creating a model, or the methods of

applying motion, it is necessary to be familiar with some principles that go into creating

character animation. The 12 principles that follow are summarized from Michael Comet's

"Character Animation: Principles and Practice." (Comet, 1999)

• Timing - Timing is everything in animation. Changing the timing of one

movement can change the emotion or behavior expressed.

• Ease In and Out - Rapid movements are not always what is desired. Starting to

walk or coming to a stop should involve a gradual ease into or out of instead

of a rapid walk starting from a complete stop.

• Arcs - Almost all movement in the real world involves arcs, vice straight lines

- so should animations.

• Anticipation - This means that animations should allow the viewer to know

what is going to happen next.

• Exaggeration - Used to accent an action to appear more realistic.

 40

• Squash and Stretch - Objects in motion are affected by squash and stretch, so

should the objects in animations. Balls squash down when hitting the ground

and muscles bulge when used.

• Secondary Action - A good example for secondary animation would be a

horse running and coming to a quick halt before reaching the ledge of a cliff.

As the horse comes to a quick stop, the ears and tail should be affected by the

stop of forward motion, this is the secondary action.

• Follow Through and Overlapping Action - This is the action at the end of the

action. When throwing a ball, the arm doesn't stop when the ball is released,

but continues on as follow through. The same is true for most other actions.

• Straight Ahead Action and Pose-to-Pose Action - The difference is this:

straight ahead action is drawing each frame from the start of the motion to the

end of the motion, while pose-to-pose action is defining the start pose and the

end pose and allowing the in-between poses to be interpolated.

• Staging - Make sure that what the viewer is supposed to see is easily

understood. Don't have too many things going on at the same time.

• Appeal - The shapes and motion should be appealing to the viewer.

• Personality - By combining all the above principles and the animations

themselves, the character will take on a life of its own, and with that its own

personality.

Following all these principles doesn't guarantee a good character

animation, but it is instead a good starting point. The creation of character animation still

involves having patience, skill, a good model and a good technique for applying motion

to the model. The first step in that process is creating a model.

d) Modeling the Character

There are several different ways to create a 3D model, which one you

choose depends on your skills and what the desired use is. Let's look at a few ways that

models are created:

 41

• By Hand - Polygon by Polygon

This technique can be very time consuming, but can be a good starting

point for just starting out in 3D modeling. The process is to start off with a reference

point, like a photograph, and then start plotting points where they should be in reference

to the photo. The points are connected with polygons forming a mesh in the shape of the

reference photo. When the mesh is complete, a texture (usually from the photo) is applied

the polygons, hopefully giving a pretty accurate model of the original photos.

• 3D Scanning.

The approach this technique uses is high-resolution photography. A large

number of high-resolution photos are taken of the object wanting to be modeled from

every angle. The photos are then stitched together via software to produce a 3D model.

The high-resolution photos also produce the textures necessary for the model, creating a

photo-realistic model. This approach is usually done through 3D scanning studios and

incurs a cost.

• Digitizing

This appears to be a favorite among animators for creating 3D models.

The process starts with making an actual model of the character, usually in clay. Lines

are drawn on the clay model forming a kind of mesh over the model. Using a digitizing

arm, the lines are then traced, which creates the 3D model in the computer.

e) Creating the Animations and Motion Capture

Animation is created using a variety of different methods, each having its

advantages and disadvantages. This section looks at a few of the techniques that

animators use to create animations for use in computer generated (CG) characters. All

animations, though, usually stem from the observations of real movements, whether it is

from humans, or animals in nature. What better way to model how a human walks than to

observe how humans actually walk, or to find some way to capture that walk, or the

"data" of that walk. When modeling horses or birds, to be able to create realistic looking

animations, research and observation are required. Industrial Light & Magic animator

 42

Dan Taylor explains the research that went into the animating of the dinosaurs in Jurassic

Park, "Although there were lengthy discussions with paleontologists about the probable

appearance of dinosaur walk and run cycles, animators looked to bird and reptilian

movement for inspiration." (Street, 2002)

However, simply observing movements is not enough. The process of

video taping a person falling and then playing back that person falling is not considered

motion capture. In order to have motion capture, the "motion" of the person falling (or

more specifically, the data associated with the falling) has to be captured. As John

Dykstra explains the process for the making of Spider-Man, "We studied Tobey's posture,

movements, and how he gestured...and we translated all those details into the actions and

maneuvers of our virtual Spider-Man." (Scott, 2002)

The major categories found today for creating motion can be divided into:

manual specification or keyframing, procedural and simulation, and motion capture. All

three are currently used in the process of creating motion by animators.

• Manual Specification or Keyframing.

This method entails creating a series of individual poses and then creating

the animation via a series of keyframes of those poses. "Keyframing has been the

traditional approach to controlling the subtle details of virtual humans. However, the

technique requires the animator to have a detailed understanding of how moving objects

should behave over time, in addition to the skills needed to produce the key frames."

(Millar, 1999) This can be a long and tedious task. The skill level required for this

technique is high and usually requires patience and training. This method sometimes

proves to be a daunting task to create realistic looking animations. Animation software

has gotten better and helps to alleviate some of the task by performing interpolations in

between keyframes. Some of the features that have been introduced in the past few years

include:

o Patch-based animation allows smooth, flexible movement.

o Complex movements are simplified; unique bones motion offers

lifelike bouncing and twisting.

 43

o Complete skeletal and muscle control features.

o Inverse Kinematics (IK) for creating skeletal based motion.

o Character animation with lip-synch made easier.

o Stride length to prevent a character's feet or tires from slipping as they

move.

o Action Overloading; applying layers of Actions to a character so that it

can "walk", "talk", and "clench" its fists simultaneously.

o Action Range; choose only a range of frames, Hold, or Wait from an

Action

o Rotoscope facial movement in Muscle with sequenced backgrounds.

o Poses.

o Lock Bones.

o Sophisticated key frame controls.

Even though the new features greatly aid the animator in creating the

keyframe animations, the process is still slow and sometimes frustrating. Tomek Baginski

recounts his experience in animating his animated short The Cathedral, winner of Best

Animated Short at SIGGRAPH 2002's Electronic Theater, "My first walk cycle took me

three weeks and it still looked bad. But when I finished, months later, I was able to

animate one scene in a day and it looked better than [motion capture] " (Animation

Magazine, Jul 2002). The animated short took Tomek 14 months to complete and was

animated using 3DS Max.

• Motion Capture

Motion capture provides a very accurate method for capturing character

motion. It is being proven extremely valuable in a variety of applications, some of which

are being utilized today are:

o Gait Analysis

 44

o Physical Rehabilitation

o Sports Medicine

o Sports Analysis and Performance Enhancement

o Entertainment - Live Performance and Pre-Visualization

o Prototyping

o Character Animation (used in real-time simulations, movies, games,

television, videos, industrial training, etc)

The use that we are obviously going to concentrate on is for character

animation. The most common techniques that are being used for motion capture are

magnetic tracking and optical tracking.

Magnetic systems used for motion tracking utilize sensors that sense a

magnetic field inside a set volume and provide a means of accurately determining the

position and orientation of the sensor. Earliest implementations had to deal with several

performance degradations, specifically:

o used cables attached to the sensors, limiting the free movement and

range of the user in the capture volume

o were susceptible to sensor noise and drift

o had to overcome electrical and metallic interference from nearby

objects

o were difficult to use

o problems getting accurate data when actors became too close together

Current advances have brought improvements to the magnetic sensor

systems and have provided for:

o wireless connectivity, increasing the range and allowable free movement

of the person

 45

o increased performance

o minimized interference and distortion by switching from AC to DC

o easier and faster setup process

o providing 6 degrees of freedom

o allowing for multiple characters being captured simultaneously

 The sensors for the magnetic systems are easily placed either inside a

custom body suit or can usually be fixed near joints on the outside of close fitting clothes.

With the advent of the wireless capability, a small computer can be worn on the back of

an actor, the sensors attached to the computer and the computer transmitting via 802.11b

to a capture station. The data can be captured for cleaning and later use, or can be applied

to real-time digital characters.

Optical tracking is broken into passive and active sensors. Active sensors

are implemented by light emitting diodes (LEDs) and passive sensors utilize

retroreflective spheres. Both are common in today's motion capture industry, but passive

seems to be the more dominate in use.

Passive sensors work by placing small retroreflective spheres on different

parts of the body and then detecting the movement of those spheres by detecting the light

reflected from the spheres. The more the markers and the better, or higher resolution, the

cameras are, the better the capture is going to be. Problems associated with passive

optical devices are the need for high-resolution cameras, the occlusion of spheres due to

objects and body parts in the capture volume and the lack of being able to identify

individual markers. Propriety software is often used in the post-capture process to

identify markers between frames.

Active sensors utilize LEDs as the target markers, which allow each

marker to be individually identified. This means accurate tracking at usually higher frame

rates, but it does require larger trackers vice camera to capture the data.

An additional method of providing motion capture, besides the magnetic

and optical systems, is an electro-mechanical system that is worn like a skeletal suit and

 46

tracks the movements of the joints. Potentiometers measure the changes in voltage at

each of the joints and provide a rotation value for that joint. This rotation provides the

data necessary to model the motion of the limbs that the skeletal system is attached to. An

example of this type of system is the Gypsy System by Meta Motion.

2. Implementation

a) Integrating the Character Animation API

Keeping with the premise of building an open-source and low cost

architecture, the number of viable character animation libraries to integrate was greatly

reduced. The library that was chosen and integrated in libGF is called Cal3D9. The use

of Cal3D in libGF requires the inclusion of cal3d.h and the statically linked library,

cal3d.lib. The wrapper to Cal3D are in the following three classes: gfCal3dObject,

gfCal3dModel, and gfCal3dNode. The hierarchy is represented by gfCal3dObject

containing a gfCal3dNode, which in turn contains a gfCal3dModel. When a new

gfCal3dObject is created, by instantiating it as a new object and subsequently adding it to

the environment, a new gfCal3dNode is created (shown in Figure 6).
humanNode = new gfCal3dNode("gfCal3dNode", mFileName);

Figure 7. Creating a new gfCal3dNode

On instantiating the gfCal3Node, arrays are created to handle the

processing of the geometry arrays based on the number of geometries in the actual

character model (shown in Figure 8).
 geoCoordinateArray = new gzArray<gzVec3>[m_numGeometries];
 geoNormalArray = new gzArray<gzVec3>[m_numGeometries];
 geoPrimitiveLengthArray = new gzArray<gzULong>[m_numGeometries];
 geoIndexArray = new gzArray<gzULong>[m_numGeometries];
 geoTexCoordinateArray = new gzArray<gzVec2Vector>[m_numGeometries];

 //add all of the geometries to the model (once)
 addGeometries();

Figure 8. Creating the geometry arrays in gfCal3dNode

b) Modeling the Character

9 Cal3D is an open-source character animation library found at http://sourceforge.net/projects/cal3d

 47

Characters used inside a virtual environment have to be modeled before

they are inserted into the environment. The process that is used to generate the character

is different for each of the modeling applications that exist, but the general concepts

remain the same. Whether the character is modeled using polygons or Nonuniform

Rational B-Splines (NURBS), the end result is that the model needs to be in a polygon

form before the character can be used in the environment. Since the VEs in use today—

and the ones built using libGF—can be very graphics intensive, and the animations of the

character are seen in real-time, the polygon count of the modeled character should remain

low. High polygon count models are useful when the desired result is photo-realistic

models, but in a virtual environment, where performance of real-time animations is an

issue, polygon count matters. The typical polygon count used in games and virtual

environments is around 5,000 polygons per model. The model that was used for

character animation in this thesis has a polygon count of less than 2,000 polygons.

This thesis is not geared toward covering the techniques used for polygon

or NURBS modeling, because there are numerous books written on the subject and it is

very dependent on the 3D modeling application used. The application used is cost

dependent; the sophisticated, commercial 3D modeling packages cost thousands of

dollars, while the cost of alternatives range from low-cost to free. The packages that

were used for this thesis were Discreet® 3ds max™10 and Alias® Maya®11. The same

model could be created in a free or low-cost 3D modeling application such as Blender12,

Wings3D13, or MilkShape 3D14.

Regardless of the package chosen to create the character, in order to be

able to apply animations, the character should be modeled in a standard pose, such as the

10 3ds max™ is a registered trademark of Discreet®. Discreet® is a subsidiary of Autodesk, Inc. –

http://www.discreet.com
11 Maya® is registered to Alias Systems, a division of Silicon Graphics Limited -

http://www.alias.com
12 Blender is a recently turned open-source 3D modeling application from the Blender Foundation –

www.blender3d.org
13 Wings3D is a free polygon mesh modeler - http://www.wings3d.com
14 MilkShape 3D is a shareware application by Chumbalum Soft -

http://www.swissquake.ch/chumbalum-soft/index.html

 48

T-pose shown in Figure 9. Careful attention needs to be paid to ensure that the model is

complete, with no gaps between vertices, and that duplicate vertices do not exist. Both

conditions will result in unfavorable mesh transformations and appearance of the model

when the animations are later applied.

Figure 9. Modeling the character - polygon mesh

Once the polygon mesh is complete and the character is correctly

modeled, a texture is applied to give the model the desired appearance. Since this thesis

deals specifically with military applications for virtual environments, the texture chosen

was one of a Marine. The normal practice for applying textures to a model is to have all

necessary textures combined into one texture file from which the different parts of the

texture are applied—using UV coordinate mapping—to the appropriate portions of the

model. Figure 10 shows what a combined texture file looks like, with the final result of

the texture being applied to the model shown in Figure 11.

 49

Figure 10. Texture file before applying to model

Figure 11. Texturing the model

 50

Since the model is going to be used in a virtual environment, and because

most applications assume the orientation, it is best to have the character model facing in

the +Z direction.

c) Rigging with a Skeleton

Rigging a model is the process of building a hierarchy of bones to build a

skeleton for that character and then applying the polygon mesh to the skeleton—called

skinning. Most animators start with a somewhat standard bone hierarchy and then

modified the setup to suit their needs. If the character animation is going to include hand

animations, then the bones in the hand are important; however, if there will not be any

fine-tuned hand movements in the animations, then there is no need to insert the extra

bones. The skeleton should be simplified to what is necessary and functional for the

animations will going to be generated. Additional bones are often used for points to add

equipment, apply facial animations, and attach weapons. These bones provide an easy

insertion point and a means to provide new animations.

The character model used for this thesis required only a standard human

skeleton rig and an additional bone to facilitate the use of a weapon. This additional bone

joint allowed the weapon to be easily hand animated—key framed—separate from the

animations applied to the entire skeleton. By defining constraints, single joints can be

made to follow the same movement, and/or orientation, of a single point or another joint.

Constraint addition, with respect to the weapon, makes it easy to force the weapon joint

to stay constrained to the right shoulder joint, and at the same time always orient itself to

a point in front of the character.

An additional consideration when creating a character skeleton is whether

it is necessary to provide the additional joints for possible limb rotation. For example,

when creating the right arm hierarchy, one way is to create the right shoulder, right arm,

right forearm, and right hand. This doesn’t necessarily lend itself to easily isolate and

rotate the right forearm, except from the joint between the right arm and right forearm.

The solution, if that kind of separate rotation is necessary, is to provide additional joints

between the right arm and the right forearm; an additional bone called ‘right forearm

upper’ would allow the right forearm and right hand to be rotated separate from the right

 51

arm. Although this functionality was not necessarily required for this thesis work, the

additional joints were added for possible future functionality.

Figure 12 shows the hierarchy that was used in the rigging of the model.

The hip joint acts as the central joint for the entire skeleton, with the upper body (spine,

head, and arms) and both legs branching off. The final rigged character is shown in

Figure 13. The model is in the standard T-pose and the weapon has been moved out from

of the character and attached to the weapon joint.

Figure 12. Hierarchy of bones in character model

 52

Figure 13. Rigging the skeleton

Prior to applying weights to the vertices, the mesh must be bound to the

skeleton. This process is called skinning the model and should be done using a smooth

bind. Usual settings when applying the smooth bind include choosing the complete mesh

to bind and for binding mesh vertices to the closest joint.

d) Applying Weights to the Vertices

In order for the mesh to act appropriately when the skeleton is transformed

and animations applied, proper vertex weighting has to be applied to the mesh. This

process tells each vertex how much influence is contributed from the movement of each

of the joints in the skeleton. If a contribution from a foot joint is attributed to the mesh

surrounding one of the shoulders, then when the foot joint is moved, the mesh around the

shoulder will show deformations. This is obviously an unnatural behavior and is fixed by

proper weighting of the vertices.

The vertex weights are modified by editing the smooth skin bound to the

skeleton; Figure 14 shows the character model with the LeftArmRoll joint selected and

the vertex weights which that joint contributes to. The more joint contributions placed on

a vertex, the whiter the mesh appears around that vertex—while in vertex paint mode.

Notice that the rest of the body, besides the vertices in the vicinity of the upper left arm,

B Visyi Shsdhg LigMng Show PvWs

"'St

s^ ^^?
^ ^S'
^ "^^tr-
A

^^^^^^^^*

■ 1 laT^
FFl i^^^^
,k>| i^^ra* .,-

■1 i IB liEd

\| ■ ^^
^^^

[^—-^—.—-_—-_—^.-^ ,—._—'"'p \—-.—-. -.—^—-.—^—'.—j

 53

are shown in black—meaning that the LeftArmRoll joint has no contribution to other

vertices.

Figure 14. Painting the vertex weights

While applying vertex weights to the mesh, prior to animating the model,

the joints should be moved and rotated to verify that the correct weights have been

applied to the vertices affected by each joint. Doing this allows missed and incorrectly

weighted vertices to be fixed during the weighting process. Once the character model has

been rigged and the vertex weights applied, the model is ready to animate.

e) Mapping and Applying the Motion Capture Data

In order to apply animations to the character and avoid keyframing all

animations by hand, Motion Builder™15 can be used to easily apply motion capture

(mocap) data to the skeleton. Exporting the character model from a 3D modeling

application to FBX16 format—the industry standard—allows the model to be imported

into Motion Builder™, which can apply mocap data.

15 Motion Builder™ is a registered trademark of Kaydara, Inc. – www.kaydara.com
16 FBX is a cross-platform file interchange format for 3D data, widely used in the animation industry

 54

The motion capture data is mapped to a character using the steps outlined

below. This is by no means an exhaustive list of the steps necessary, but more of a

synopsis. A complete procedure is found in the Motion Builder™ and readily available

tutorials found at 3D Buzz.

• Inside Motion Builder™, first load the character model from the FBX file

used to export it from the 3D modeling application.

• Make the model a character by dragging the Motion Builder™ character icon

located in the asset browser onto the model. This will create a new character

and, provided the skeleton was laid out correctly, will characterize the

character allowing it to be used inside Motion Builder™.

• Create a control rig for the character.

• Ensure that the foot definition markers are aligned properly and placed so that

they contact the floor.

• Drag an actor from the Asset Browser onto the character.

• Import the optical motion capture data and position the virtual actor so that it

aligns with the optical markers.

• Create a marker set, which attaches the optical markers to the Actor.

• In the character control tab, set the input to be from the Actor.

• Now playing the motion capture data, attached to the Actor, will also animate

the Character.

• Modifications to the animations can be made using the bend and rotation

settings of the character.

• Once the animation is complete, it must be backed onto the character.

• The Character is now ready to export back out to an FBX file and imported

back into the 3D modeling application for fine-tuning.

 55

Figure 15. Mapping the motion capture

When the mocap data has been applied and the desired animations are

ready, the model is once again exported to the FBX file format and then is re-imported

into the 3D modeling application. There, the animations are fine tuned and cleaned to

produce the file animations that will be exported for use in the virtual environment.

f) Final Adjustments and Exporting the Model

Once the model is back in the 3D modeling application, the animations are

fine-tuned, with possibly new ones added. In the case of the Marine model, the

animations that were applied to the weapon inside Motion Builder™ did not prove to be

very realistic; so, the keyframes specific to the weapon were deleted and the weapon joint

was keyframed by hand. This allowed applying the constraints discussed above in

Section b to always orient the weapon with the right shoulder and always aim at a locator

placed in front of the model. Both hands were also positioned to appear to be always

gripping the weapon, even with the normal bouncing and swaying that occurred during

 56

the walk and run animation cycles. Making these fine-tune adjustments resulted in a

more realistic character animation.

Since Cal3D was the animation package integrated into libGF, the model

and its respective animations had to be exported to a format compatible with Cal3D.

Currently, there are exporters available for 3ds max™ and Blender, with an exporter for

Maya® in progress. To export the model and animations from 3ds max™ using the

Cal3D exporter, the following steps must be taken:

• Load the model into 3ds max™. Make sure the animations are cleaned up and

fine-tuned.

• Ensure that the Cal3D plug-in is installed.

• Make sure the character is in the base pose (T-pose).

• Select the skeleton and export using the Cal3D exported, selecting the Cal3D

Skeleton File (*.CSF) option. Make sure all the bones are selected prior to

exporting.

• Select the mesh (with the character still in the base pose) and export again, but

this time select the ‘Cal3D Mesh File (*.CMF)’ format. You will need to

select the previously exported skeleton file to associate with prior to

exporting.

• After making sure that the animations are good, export the animations using

the ‘Cal3D Animation File (*.CAF)’ export option. Again, you will have to

select the previously exported skeleton and ensure that all the bones are

selected.

• Lastly, export the textures/materials by using the ‘Cal3D Material File

(*.CRF)’ export option. You will need to select the appropriate material to

associate with the model when exporting.

• Using the file format shown in section II.B.3.c, use the filename of the newly

exported skeleton, mesh, animations, and material to prepare the new

character for use in the virtual environment.

 57

3. Application

Using character animation in an application written with libGF requires creating a

new gfCal3dObject, as shown in Figure 16, and then attaching a motion model to the

player as discussed in section F.3.a.
// Get the full pathname of the model XML file
char configFile[256];
gfGetFullFileName(configFileStr, configFile);

// Create the new gfCal3dObject
gfCal3dObject *avatarObject = new gfCal3dObject(objectNameStr, configFile);

// Set the scale of the character
avatarObject->SetScale(obj.scaleX, obj.scaleY, obj.scaleZ);

// Create a new gfPosition and use it to set the object’s position
gzRefPointer<gfPosition> pos = new gfPosition(positionX, positionY, positionZ,
 positionH, positionP, positionR);
avatarObject->Position(pos);

// Add the new avatar object to the environment
environmentPtr->AddObject(objectNameStr);

// Find the motion model for the object, set the offset of the avatar and rifle, then set
// the avatar to receive messages from the motion model (for updating position and
// animations).
gzRefPointer<gfMotionHuman> motion = (gfMotionHuman *)gfFindMotion(motionStr);

if(motion != NULL) {
 gzRefPointer<gfPosition> offset = new gfPosition();
 avatarObject->GetOffset(offset);
 motion->SetRifleOffset(offset);
 avatarObject->AddNotifier(motion);

 // Make body and geometry for the motion model
 char marineCollisionFile[256];
 gfGetFullFileName("Marine_collision.xml", marineCollisionFile);
 gfCDGeomGroup *motGeomGroup = new gfCDGeomGroup("motGeomGroup",
 marineCollisionFile);
 gfPhysicsBody *motBody = new gfPhysicsBody("motBody");
 motBody->setMassToBox(10.f, 1.3f, 1.3f, 1.3f);

 // Set the physics pieces for the motion model
 motion->setCDGeom(motGeomGroup);
 motion->setPhysicsBody(motBody);
 motion->setSlip(0.1f);
}

Figure 16. Creating a new gfCal3dObject and adding the motion model

Once the new avatar object has been created, the interaction between the avatar

and the user is handled automatically by the human motion model trapping the input from

 58

interface device and sending the necessary animation commands to the gfCal3dObject

class; also over the network if that functionality is being used. Modification of the model

definition file allows easily modifying the settings that are used to define, load, and

configure the avatar model. The layout of the file is discussed in more detail in section

B.3.c.

Once the animations are created, they can be applied to multiple character models.

Following the steps discussed earlier, a new model can be created, textured, rigged, and

animated and then exported for use in the environment model.

4. Future Work

The future work needed for the character animation library is the addition of

dynamic blending of animations. Currently, the API does support blending but only

static blending. A Marine walking animation and an animation of the weapon being

aimed at 45 degrees up can be blended together to form the Marine walking and aiming

the rifle. But there is no current method to dynamically blend the two together to make

the Marine walking and aiming the rifle at 45 degrees down. In order to have the rifle

aiming to be able to occur at all angles, each position of the rifle would have to be

animated. Providing dynamic blending would help to increase the realism of the remote

player’s rifle aiming and would decrease the number of animations required to achieve

that realism.

In addition, increasing the collection of animations is required to provide more

realistic training such as crouching, jumping, etc. These animations exist in motion

capture form but, because of the lack of a Cal3D exporter for Maya and the problems

seen when trying to export the animations and model back into 3ds max for exporting, the

animations were never added. With a working exporter for Maya these animations could

be added to the library in a very short time. There is currently work being done on a

Cal3D exporter for Maya and when complete it will help to reduce the workflow of

model to animating to application.

 59

B. XML READ/WRITE FUNCTIONALITY

1. Motivation

Data files have notoriously been custom, or proprietary, formats lending

themselves to becoming unmanageable or even obsolete. As applications are written, the

necessary file format is generated and often revised over the course of the application’s

lifespan. The files are usually stored in either a cryptic text format, or a unknown binary

format. Both formats prevent easy modification by a user outside the application and

often lead to application errors due to of incorrect, or unknown, data.

In 1996, the W3C introduced a new file format, built upon and extending the

Standard Generalized Markup Language (SGML) file format, called Extensible Markup

Language (XML). This was created as a meta-language and imposes very strict

formatting requirements on the file formatting. The data of an XML file is easily

understood because descriptive tags are stored with the data, i.e. data describing the data.

XML files are composed of a hierarchical structure comprised of text fields, known as

entities. This strictly formatted hierarchy of human-readable data makes it easy for data

to be entered, modified, and interchanged.

Our decision to implement XML as the data file format was because of the ease of

use, the readability and known format, ease of modification by a generic text editor, and

the relative ease of parsing the files.

2. Implementation

There are several open-source XML parsers available for use. We looked at a

couple and decided that only a simple, sequential read/write parser was required. The

XML library that we chose to integrate was ParamIO written by Arnaud Brejeon. The

only limitations that we ran into when using the library was the fact that entities can not

share the same name—meaning that you can have a structure such as:
<MediaPaths>
 <Path>\data\textures</Path>
 <Path>\data\images</Path>
</MediaPaths>

Figure 17. Incorrectly labeled entities

 60

This limitation is easily overcome though by simply modifying the entity tags to contain

a sequential number for each new entity, as below:
<MediaPaths>
 <Path00>\data\textures</Path00>
 <Path01>\data\images</Path01>
</MediaPaths>

Figure 18. Correctly labeled entities

The integration of the ParamIO library into libGF was done with only slight

modifications made to the library. Instead of creating a new libGF wrapper class around

ParamIO, the methods are set to be directly called; making the integration virtually

transparent.

3. Application

As stated previously, we chose to use XML as our standard data file format. This

allowed us the flexibility of being able to modify most aspects of the application specific

data, such as media paths, the use of trackers, and even the models used, without having

to modify the application code and perform a re-compile. A simple change to an XML

file and rerunning the application is all that is necessary to completely change most

aspects of the scenario being run. The ease of opening an XML file and reading in the

data is shown in the following snippet:
ParamIO inXml;

inXml.readFile(filename); // Read the file from disk

// Read in media paths
inXml.read("System:MediaPaths:Number", m_numMediaPaths, 0);

char mediaPathStr[64];

for(int x = 0; x < m_numMediaPaths; x++) {
 sprintf(mediaPathStr, "System:MediaPaths:Path%.2d", x);
 inXml.read(mediaPathStr, m_mediaPaths[x], std::string(""));
 printf("Loading in media path... %s\n", m_mediaPaths[x].c_str());
}

Figure 19. Example XML code

The data files that we chose to implement are as follows (with accompanying

examples):

 61

a) System File

The system file (default name is system.xml) is where the majority of the

application specific configuration is done. All the normal settings dealing with

application specific attributes are outlined in the example listing below. The key settings

that are addressed in this file are network configuration, media paths, player and observer

settings, window and channel settings, motions model used, and the configuration of

inertial trackers (if used). A key point about configuration using XML, is that if a

configuration is being used that does not require the use of trackers, but they are being

used in a different situation, instead of removing the entire section from the file, simply

change the number of trackers field to ‘0’ and no tracker information will be read-in by

the application.
<System>
 <Name>CQBTrainer</Name>
 <Network>
 <Mode>standalone</Mode>
 <Server>ripple</Server>
 <Player>GoodGuy</Player>
 <Notifier>
 <Type>gfMotionHuman</Type>
 <Name>Motion</Name>
 </Notifier>
 </Network>
 <MediaPaths>
 <Number>3</Number>
 <Path00>c:\\Models\\</Path00>
 <Path01>c:\\libgf\\data\\Marine\\</Path01>
 <Path02>c:\\libgf\\data\\Models\\</Path02>
 </MediaPaths>
 <Windows>
 <Number>1</Number>
 <Window00>
 <Name>window1</Name>
 <Size>
 <Left>50</Left>
 <Right>850</Right>
 <Top>50</Top>
 <Bottom>650</Bottom>
 </Size>
 </Window00>
 </Windows>
 <Channels>
 <Number>1</Number>
 <Channel00>
 <Name>mainChannel1</Name>
 <Window>window1</Window>

 62

 <Color>
 <R>0.5f</R>
 <G>0.5f</G>
 0.6f
 <A>0.0f
 </Color>
 <Near>0.1f</Near>
 <Far>10000.0f</Far>
 <Horizontal>45.0f</Horizontal>
 <Vertical>-1.0f</Vertical>
 </Channel00>
 </Channels>
 <Scene>
 <Name>Scene</Name>
 </Scene>
 <Objects>
 <Number>1</Number>
 <Object00>
 <Name>avatarObject</Name>
 <Type>gfCal3dObject</Type>
 <ConfigFile>Marine.xml</ConfigFile>
 <Motion>Motion</Motion>
 </Object00>
 </Objects>
 <Input>
 <Name>Input</Name>
 <Type>gfInputGeneric</Type>
 <Window>window1</Window>
 </Input>
 <Motions>
 <Number>1</Number>
 <Motion00>
 <Name>Motion</Name>
 <Type>gfMotionHuman</Type>
 <Input>Input</Input>
 <Position>
 <X>-27.0f</X>
 <Y>0.45f</Y>
 <Z>-1.0f</Z>
 <H>0.0f</H>
 <P>0.0f</P>
 <R>0.0f</R>
 </Position>
 <Tracker>RifleTracker</Tracker>
 <FlipJoystick>True</FlipJoystick>
 <WalkingSpeed>2.0f</WalkingSpeed>
 <RunningSpeed>4.0f</RunningSpeed>
 <WalkRunThreshold>95</WalkRunThreshold>
 <RotationInterval>50</RotationInterval>
 <GlanceInterval>50</GlanceInterval>
 <SideStepInterval>75</SideStepInterval>
 <RotationVelocity>3.5f</RotationVelocity>
 <StepUpHeight>0.6f</StepUpHeight>
 </Motion00>
 </Motions>

 63

 <Trackers>
 <Number>2</Number>
 <Tracker00>
 <Name>HeadTracker</Name>
 <Port>1</Port>
 <Station>0</Station>
 <Scale>
 <X>1.0f</X>
 <Y>1.0f</Y>
 <Z>1.0f</Z>
 <H>-1.0f</H>
 <P>1.0f</P>
 <R>-1.0f</R>
 </Scale>
 </Tracker00>
 <Tracker01>
 <Name>RifleTracker</Name>
 <Port>1</Port>
 <Station>1</Station>
 <Scale>
 <X>1.0f</X>
 <Y>1.0f</Y>
 <Z>1.0f</Z>
 <H>-1.0f</H>
 <P>1.0f</P>
 <R>-1.0f</R>
 </Scale>
 </Tracker01>
 </Trackers>
 <Players>
 <Number>1</Number>
 <Player00>
 <Name>GoodGuy</Name>
 <Type>gfPlayer</Type>
 <Motion>Motion</Motion>
 <VisObject>avatarObject</VisObject>
 <Weapon>M16</Weapon>
 </Player00>
 </Players>
 <Observers>
 <Number>1</Number>
 <Observer00>
 <Name>MainObserver1</Name>
 <Channel>mainChannel1</Channel>
 <Scene>Scene</Scene>
 <Environment>environment</Environment>
 <Position>
 <X>0.0f</X>
 <Y>1.1f</Y>
 <Z>0.0f</Z>
 <H>0.0f</H>
 <P>0.0f</P>
 <R>0.0f</R>
 </Position>
 <TetherOffset>True</TetherOffset>

 64

 <SetLookAtObject>NULL</SetLookAtObject>
 <SetLookAtMode>GFOBS_LOOKAT_NONE</SetLookAtMode>
 <TetherMode>GFOBS_TETHER_FIX_PCS</TetherMode>
 <TetherPlayer>GoodGuy</TetherPlayer>
 <Tracker>HeadTracker</Tracker>
 </Observer00>
 </Observers>
</System>

Figure 20. Example of system.xml file

b) Scenario File

The scenario file encompasses settings that are specific to different

scenarios and vary from one scenario to the next, vice settings that remain constant for

the application. This includes the actual objects (i.e. models) being placed in the

simulation, the lighting and skybox settings, the environment configuration, and the

actual targets that are required in the scenario. The example below shows a scenario

file—note that as in the system file, the number field change be changed to only include

the first two targets even though there might be a list of 50 targets.
<Scenario>
 <Objects>
 <Number>1</Number>
 <Object00>
 <Name>townObject</Name>
 <Type>gfObject</Type>
 <Dataset>
 <Name>townDS</Name>
 <File>MOUT_2.6-6-tri_007.flt</File>
 </Dataset>
 </Object00>
 </Objects>
 <Lights>
 <Number>0</Number>
 <Light00>
 <Name>light1</Name>
 <Environment>environment</Environment>
 <Position>
 <X>-2.0f</X>
 <Y>2.0f</Y>
 <Z>-8.0f</Z>
 <H>0.0f</H>
 <P>0.0f</P>
 <R>0.0f</R>
 </Position>
 <AmbientColor>
 <R>0.8f</R>
 <G>0.8f</G>
 0.8f

 65

 </AmbientColor>
 <DiffuseColor>
 <R>0.9f</R>
 <G>0.9f</G>
 0.9f
 </DiffuseColor>
 <SpecularColor>
 <R>0.9f</R>
 <G>0.9f</G>
 0.9f
 </SpecularColor>
 </Light00>
 </Lights>
 <Environment>
 <Name>environment</Name>
 <Shadows>False</Shadows>
 <Fog>
 <Enable>True</Enable>
 <Mode>GF_FOG_EXP2</Mode>
 <Density>0.01f</Density>
 <Near>1.0f</Near>
 <Far>10000.0f</Far>
 <Red>0.5f</Red>
 <Green>0.5f</Green>
 <Blue>0.75f</Blue>
 </Fog>
 </Environment>
 <SkyBox>
 <Name>skyBox</Name>
 <Environment>environment</Environment>
 <FrontFile>cqbFront_512.bmp</FrontFile>
 <BackFile>cqbBack_512.bmp</BackFile>
 <RightFile>cqbRight_512.bmp</RightFile>
 <LeftFile>cqbLeft_512.bmp</LeftFile>
 <TopFile>cqbTop_512.bmp</TopFile>
 <BottomFile>cqbBottom.bmp</BottomFile>
 </SkyBox>
 <Targets>
 <Number>1</Number>
 <Target00>
 <Name>OpFor00</Name>
 <FileName>eqp_misc_target_opfor01.3DS</FileName>
 <ID>1</ID>
 <Position>
 <X>9.262337719</X>
 <Y>0.75</Y>
 <Z>-6.132306352</Z>
 <H>-90.0f</H>
 <P>0</P>
 <R>0</R>
 </Position>
 <Scale>
 <X>0.01875f</X>
 <Y>0.01875f</Y>
 <Z>0.01875f</Z>

 66

 </Scale>
 <Animation>
 <EndingY>0.0f</EndingY>
 <FrameStep>5</FrameStep>
 <TotalTime>0.5</TotalTime>
 </Animation>
 </Target00>
 </Targets>
</Scenario>

Figure 21. Example scenario file

c) Character Definition File

The character definition file defines the individual characters placed into

the environment. The settings in this file are defined for specifying the skeleton, mesh,

and textures used for the character and the animation used to for that character.
<model>
 <scale>0.025</scale>
 <skeleton>Marine_skeleton.csf</skeleton>
 <animation>
 <type>state</type>
 <animation_name>idle</animation_name>
 <transition>11</transition>
 <file>Marine_standing.caf</file>
 </animation>
 <animation>
 <type>state</type>
 <animation_name>walk</animation_name>
 <transition>15</transition>
 <file>Marine_walk.caf</file>
 </animation>
 <animation>
 <type>state</type>
 <animation_name>run</animation_name>
 <transition>15</transition>
 <file>Marine_run.caf</file>
 </animation>
 <animation>
 <type>state</type>
 <animation_name>sidestepleft</animation_name>
 <transition>15</transition>
 <file>Marine_sidestep_left.caf</file>
 </animation>
 <animation>
 <type>state</type>
 <animation_name>sidestepright</animation_name>
 <transition>15</transition>
 <file>Marine_sidestep_right.caf</file>
 </animation>
 <mesh>
 <file>Marine_cover.cmf</file>
 <file>Marine_head.cmf</file>

 67

 <file>Marine_body.cmf</file>
 </mesh>
 <material>
 <file>Marine_material.crf</file>
 <file>Marine_material.crf</file>
 <file>Marine_material.crf</file>
 </material>
</model>

Figure 22. Example Character definition file (Marine.xml)

As is shown by the code snippet above and the example XML files, the

addition of XML to libGF provides a very easy and structured way to modify an

application’s system, scenario and character settings without the added necessity of

having to recompile the application after each change. Modifying external data files, that

are in a well-structured and readable format, greatly increases the flexibility and dynamic

nature of any application, especially a virtual environment application where the

necessity to rapidly change a scenario exists.

4. Future Work

The limitations of the XML API are because of the library chosen to integrate into

libGF. Switching to a more robust library would remove the artificial restrictions placed

on the file format requiring the XML entities to be in a sequentially numbered format, as

seen in Figure 18, which forces each entity name to be a unique identifier. This

restriction is not an XML limitation but, one of the specific library integrated—a more

robust library would allow the formatting to be as seen in Figure 17.

Removing the sequentially numbered entity restriction would also help to increase

the ease of writing XML files out from within the application. Currently, a counter must

be maintained for each portion of the data tree that is to be written. Without the unique

entity requirement, the counter would not be required and the writing of data would be

more robust.

 68

C. AGENTS

1. Motivation

In many instances, military training suffers because there are not enough

personnel to effectively simulate an exercise. Squad training, done correctly, requires a

full squad, with three four-man fire teams and a squad leader. Shortchanging the number

of personnel can lead to negative training transfer in which squad members know what

formations should look like with the wrong number of personnel and will react

accordingly even when in a situation where the right number of personnel are present.

Ways to train around a shortage of personnel typically include training as though

those personnel are in fact a part of the exercise (or are notional), training smaller units

than desired, or simply training incorrectly with a shortage of personnel. Other training

methods can be used in place of or in addition to live training, such as tactical decision

games, where individuals or small units are asked to think as though they were a

battlefield unit, are given a situation and a mission, and are asked to provide a solution or

at least a first step toward solving the problem and completing the mission. However,

other methods that remove the live aspect of training do not provide the same training or

effectiveness as live training. Putting feet on the ground and walking the solution to a

problem can have a very different impact from talking through the solution.

So, given a shortage of personnel, one way to make up for those personnel is to

provide training in a virtual environment with autonomous agents simulating the

additional persons needed. But agents have advantages and drawbacks. The first

obvious advantage is that personnel shortage problems are solved. Another advantage is

that if there is a need for a “fill-in” person who is needed to perform a task and then leave

or to perform a task repetitively, such as a mechanic, a clerk, etc., that does not need to be

controlled by a real person, an agent can be used to simulate that person. The main

disadvantage, however, is that agents are not real people. While agents can be written to

move in a very realistic manner, they are not real, and generally, that is noticeable.

However, agents that react to stimulus can be written to act as nearly real as possible, and

can provide at least the semblance of realism in a training simulation that might otherwise

not.

 69

2. Implementation

Agents in libGF were implemented with two basic premises in mind: 1) all agents

will use waypoints when moving around the scene under normal, non-stimulated

circumstances, and 2) agents will use a gradient method when deciding what to do or

where to go next. In addition to these two basis premises, the implementation needed to

account for instances where the agent would handle immediate responses, such as seeing

an enemy and moving toward him.

a) Waypoints

Waypoints are locations that the agent is allowed to move to and from

under normal circumstance. Waypoints and the corresponding paths between them can

be drawn as a complete graph, where the waypoints are vertices of the graph, and paths

from each waypoint to all other waypoints represent the edges. In this manner, waypoints

can be placed at varying intervals, as sparse or dense as is needed, in order to allow the

agent travel over whatever areas the user wants. The fact that waypoints can be placed as

sparse as desired saves the computational complexity and the memory requirement of

placing a grid of waypoints uniformly over an area, but it places a heavy burden on the

user to ensure that there is a path from every waypoint to every other waypoint. This task

must be done manually, and, at present, libGF does not incorporate a level editor to create

an environment that incorporates automatic or simple waypoint placement. All waypoint

information is read into the application and used through the gfWaypointSet class.

b) Gradients

Gradients, in an abstract form, are a means by which autonomous agents

can make a choice by finding a numerically superior (or inferior) option across a

selection set. This is generally implemented through a vector or matrix of scalar values

which can be added to or subtracted from based on input. The agent can then search the

gradient values for the largest (or smallest) value. Gradients are implemented in libGF

by a one-dimensional array of vectors that each contain gradient information about a

specific waypoint. A gradient value is incremented as the desire to go to that gradient’s

corresponding waypoint increases; likewise, a gradient value is decremented as the desire

to go to a gradient’s corresponding waypoint decreases. gfAgentGradientMgr is the class

 70

that holds the gradient values and adds to and subtracts from those values based on

stimulus—when a space is encountered where no enemy is encountered by an agent, the

space is considered ‘cleared’, and the desire to return to that space diminishes

immediately, then increases slowly over time to account for the possibility of an enemy

having later entered the space. While the additions and subtractions to gradients are

arbitrarily based on application need, the current implementation of gfAgentGradientMgr

is currently fixed to provide gradient stimulus commensurate with a human character

clearing a building.

c) Pathing

The ability to know which waypoint to go to (via gradients) is not enough

information to get there. The agent may decide he wants to go to a different room or

building, based on the fact that he has not been there in some time, but if there are walls

or obstacles between the waypoint he is currently at or near and the waypoint that he

wants to go to, then a path must be determined to get him to his destination, and that path

must respect the movement requirements of the agent—in the case of human character

agents, the path must not take the agent through walls.

In order to be able to find a path from one waypoint to any other quickly, a

member of the class gfAgentPathfinder is created when an agent is instantiated. This

member takes in the position of all waypoints and uses Kruskal’s algorithm for finding

the shortest path from each waypoint to each other waypoint, assigning an infinitely large

weight to those direct paths from one waypoint to another with an obstacle between them.

(using a line-of-sight utility function which tells the algorithm if an obstacle exists

between the two points in the virtual space) gfAgentPathfinder preprocesses this

information and stores it in a two dimensional array, so that as long as the agent knows

what its destination waypoint is and what waypoint it is at, the it can always find the next

waypoint to go to directly to reach the destination. In addition to providing fast

pathfinding, this method also provides the flexibility in that an agent does not ever need

to know the entire path to get to its destination, it only needs to know where it is and

where it is going. This becomes a key flexibility issue in returning to and continuing on a

 71

path when accounting for off-path actions such as the immediate responses discussed

next.

d) Immediate Responses

In addition to the need for an agent to be able to traverse all of its

waypoints, there will be times when the agent needs to respond to stimuli by moving off

the standard set of paths created by waypoints. In these instances great care must be

taken to ensure that the agent cannot put itself in a position where it is isolated or trapped,

and a means must always be available to return to the set of paths created by the

waypoints. The agent cannot be allowed to roam around freely, as it knows little about

its surroundings; a clear and distinct set of rules must be enforced in order to ensure that

the agent can return to its original course as needed.

The gfAgent API allows the agent to leave its path only when it sees a

member of its ‘goodGuys’ list. (gfAgent was initially developed with the specific intent

to create opposing force agents which would clear rooms looking for good guys, or the

Marine participants to the application) When an agent is in direct line-of-sight to a

Marine that is a member of its ‘goodGuy’ list, it leaves its path to go to the Marine. It

will continue in this manner until it reaches the Marine or it no longer sees him. If the

agent no longer sees the Marine while not on its predetermined path, it continues to the

last place where it saw the Marine (such as the Marine’s position prior to going around a

corner), and if it then sees the Marine again, it continues to move toward him; however, if

the agent cannot see the Marine from the Marine’s last known position, the agent goes to

the nearest waypoint, adjusts his gradients so that he will continue searching in the

general vicinity of the Marine’s last known position, and otherwise goes back to basic

room clearing.

gfAgentActionMgr provides this set of rules through a complicated set of

if statements in its update() function. This function is the central point of the gfAgent

API and determines whether the agent will chase after a Marine it sees or continue on its

course. This provides the agent with a set of rules, and as long as care is taken not to let

the agent reach a position where he cannot see a waypoint, the rules will always allow the

agent to continue his search. Similar rule sets could also be made for different responses

 72

to stimuli; in the same situation of opposing forces and Marines, where the agent is the

opposing force, there could be the need for a set of rules that allow the agent to avoid the

Marine, to follow the Marine at a distance, or to go to him and then leave. Such similar

sets of rules could be separated into individual functions, as could the set of rules built

into gfAgentActionMgr::update(), such that multiple sets of rules could be evaluated.

e) Agent Motion

gfMotionAgent is the class which controls the movement of an agent—

specifically, his position, his rotation, and his animation. Because our primary focus was

on character animation, and because all of the agents produced thus far are human,

gfMotionAgent is specific to human motion and is very similar to gfMotionHuman, with

the difference being in that the input is being generated within the application as opposed

to being generated by an input device, such as a joystick. gfMotionAgent could easily be

made generic, however, in order to allow derived agent motion models for various types

of agents. Examples would include gfMotionAgentHuman, gfMotionAgentAirplane,

gfMotionAgentHelo, gfMotionAgentVehicle, etc.

f) Putting it all Together

gfAgentPlayer is the overarching interface to the gfAgent API, and it is

the class that glues the API together. In typical scene graph engine format, some of the

gfAgent information is passed in by creating members of encapsulated classes and

passing those members to members of their encapsulating classes, thus creating a tiered

building architecture. The architecture of the gfAgent API can be seen is displayed in

Figure 23.

 73

Figure 23. gfAgent API tiered architecture

g) Pathematics

It is worth mentioning the similarity between the gradient-waypoint method of

agent manipulation written into the gfAgent API and the pathematics method of routing

for autonomous agents written by Alex J. Champandard. The pathematics algorithm is a

more robust algorithm that also seeks to use a gradient method by which to move agents

intelligently. Though gfAgent was not a product of pathematics, the research done by

Alex Champandard is worthy of careful review in extending the gfAgent API.

3. Application

a) How to Create a Set of Waypoints

In order to use the agent capabilities of the gfAgent API, the user has to

first create a set of waypoints. Figure 24 shows an example waypoint set in the XML

format expected by gfWaypointSet. The reader may note the addition of the path and

numpathpoint tags, which are partially implemented into the gfAgent API in order to

allow agents to move in a simple path (continuously) through the waypoints.
<waypointset>
 <numwaypoints>4</numwaypoints>
 <waypoints>
 <waypoint0>
 <x>-2</x>
 <y>0.2</y>
 <z>0</z>
 <h>0</h>
 <p>0</p>

 74

 <r>0</r>
 </waypoint0>
 <waypoint1>
 <x>-2</x>
 <y>0.2</y>
 <z>-5</z>
 <h>0</h>
 <p>0</p>
 <r>0</r>
 </waypoint1>
 <waypoint2>
 <x>-7</x>
 <y>0.2</y>
 <z>-5</z>
 <h>0</h>
 <p>0</p>
 <r>0</r>
 </waypoint2>
 <waypoint3>
 <x>-7</x>
 <y>0.2</y>
 <z>0</z>
 <h>0</h>
 <p>0</p>
 <r>0</r>
 </waypoint3>
 </waypoints>
 <numpathpoints>4</numpathpoints>
 <path>
 <pathpoint0>0</pathpoint0>
 <pathpoint1>3</pathpoint1>
 <pathpoint2>1</pathpoint2>
 <pathpoint3>2</pathpoint3>
 </path>
</waypointset>

Figure 24. a gfWaypointSet waypoints file, WaypointSet.xml

In order to use the waypoints from Figure 24 in the application, a

gfWaypointSet must be created that reads the waypoint information from the XML file,

as shown in Figure 25.
 char waypointsFile[256];
 gfGetFullFileName("TestWaypointSet.xml", waypointsFile); //gets the full path name
 //of the file, puts it in the array waypointsFile

 gfWaypointSet *wayPoints = new gfWaypointSet(waypointsFile);

Figure 25. Creating a gfWaypointSet

 75

b) How to Create an Agent

The creation of an agent involves the creation of a gfAgentPlayer, which

is the interface to the API. Before creating a gfAgentPlayer, the programmer must first

create a starting position for the agent (a gfPosition), the waypoints (a gfWaypointSet),

and a list of ‘good guy’ names (an array of character pointers) for the agent to potentially

seek out. An example of creating a gfAgentPlayer is shown below, in Figure 26.
 //create the gfPosition for where the agent is to start. This must be within line-of-sight
 // of a waypoint
 gfPosition *agentPos = new gfPosition(2.0f, 0.200000f, 0.0f, 180.0f, 0.0f, 0.0f);

 //the list of names of ‘good guys’ that the agent should look for and go to if he sees
 // one; this must be the character array names given to those gfPlayers that the agent
 // is to look for
 char *goodGuyNames[] = {"GoodGuy"};

 //the fourth parameter is the number of names provided in the fifth parameter (or the
 // number you want to use; if there are 3 names, and you put a 2 in the fourth
 // parameter, the agent will only look for the gfPlayers associated with the first two
 // names in goodGuyNames
 gfAgentPlayer *agentPlayer = new gfAgentPlayer("agentPlayer", wayPoints,
 agentPos, 1, goodGuyNames);

 //avatarObject is the gfObject, (in this case a gfCal3dObject) already created to be the
 // visual representation of the agent
 agentPlayer->AddVisObj(avatarObject);

Figure 26. Creating a gfAgentPlayer

Because there is currently only one available motion model for agents

(gfAgentMotion), the motion model is created within gfAgentPlayer, keeping the user

interface simple by removing the need for the user to know anything about the motion

model. When the user adds the visible object to the agent, the agent also makes the

motion model a notifier of the visible object, so that the visible object will receive the

gfSystem::SendNotify() notifications it needs in order to be positioned by the motion

model.

4. Future Work Specific to the gfAgent API

There are several future issues that should be addressed if gfAgent is further

developed. Two of these issues are code revisions that have not yet been completed.

gfAgent needs the scene geometry to be drawn prior to the preprocessing of waypoint

 76

paths, so that line-of-sight determinations between waypoints will account for walls and

geometry. Currently, the way the API is written, this usually happens, but not always.

gfAgentPathfinder needs to ensure that gfSystem:: UpdateSystem() has been called at

least once, to ensure that the geometry is available. In addition to ensuring the validity of

paths, code needs added to be able to put agents on a set path, as opposed to allowing

rule-based movement. This gives the programmer the ability to script basic movement

for such simple program additions as character walk-throughs, and the creation of non-

responsive crowds. Paths are already a part of the XML file (Figure 24), and are read

into gfWaypointSet. Code needed would give gfAgentActionMgr the ability to

distinguish and account for agents that move once or continuously through a path.

All other future work lies in the need to make the gfAgent API more generic, so

that it can be used in different scenarios and for different object genres. For instance, if

an aircraft agent were desired, the differences needed in the API would include creating a

different set of immediate responses (specific to aircraft), a different gradient algorithm

(a desire to move toward a waypoint based on a different set of stimuli than with a human

genre), and a different motion model. The solution to making the motion model generic

is to make gfAgentMotion an abstract class, pass in an enumerated value to the

gfAgentPlayer constructor as to which genre was being used, and use the concrete

superclass of gfAgentMotion (such as gfAgentMotionAirplane) specific to that genre.

Using the same enumerated input to gfAgentPlayer, gfAgentGradientMgr could use

different gradient modifier rules also based on genre, and gfAgentActionMgr could also

use different genre-based rules to allow for immediate response issues. The structure of

the gfAgent API is organized and general enough to allow for needed future flexibility.

 77

D. NETWORKING

1. Motivation

Part of the idea behind creating an architecture to easily create virtual reality

training environments is to have the ability for several users to network together and

experience a shared virtual environment. We wanted to be able to create a virtual reality

training simulation where a fire team of four Marines, or even a squad of thirteen

Marines, can get together and practice the procedures required for room and building

clearing by simply networking laptops together while deployed. In the past, the vast

majority of MOUT training has been accomplished in actual mock-up buildings requiring

time, resources, and money. And even with this training, there is still downtime, without

any procedural training, while the Marines are deployed on ships. With the creation of a

scalable, easily networkable, and deployable virtual reality training system, the downtime

can be turned into worthwhile room and building clearing procedural training, while

deployed. This was the motivation for adding networking capability to libGF.

Because this was the first iteration, or attempt, at the architecture, a choice had to

be made on the extent of the networking capability. There are several networking

protocols and simulation interchange schemes to chose from including, but not limited to:

Transmission Control Protocol / Internet Protocol (TCP/IP) and User Datagram Protocol

(UDP) as the networking protocol, Client/Server and Peer-to-Peer for the network

architecture, and DIS and HLA as the simulation interchange protocol. Since the

architecture was designed to create small-scale virtual environments, but still have the

ability to network sixteen or so users together and not necessarily provide the ability to

interchange with other, already existing simulations packages, the decision was made to

first implement a peer-to-peer scheme using UDP and not incorporate HLA or DIS. The

benefit of using a peer-to-peer architecture is that it has “the advantage of minimizing

latency for packet delivery by sending packets via the shortest path from source to

destination.” (Singhal and Zyda, 1999, p. 243) UDP was chosen vice TCP because the

need for a guarantee of packet delivery did not exist, and using UDP provided a “simple

best-effort delivery semantic on transmitted data packets” (Singhal and Zyda, 1999, p. 7);

missing the occasional packet did not limit the functionality of the environment and could

 78

be overcome when the next packet was received. The addition of HLA is to be added at a

later date and is discussed more in the future work section.

2. Implementation

The choice as the underlying library to use for networking was partially based on

the additional need for a library that could handle interface input easily. For that reason,

the library used to integrate networking capability into libGF was DirectPlay® in the

Microsoft® DirectX® SDK17. DirectPlay® provides both peer-to-peer and client/server

architectures; as previously stated because of the relatively small nature of the

environment in mind, we decided to go with the peer-to-peer setup.

The first step in integrating networking was to create a basic networking class that

would handle the DirectPlay® interface and basic connections between computers. This

base class served to establish the initial connection, determine which machine was acting

as the “host” machine for the session, and which were acting as simply a “peer.” Even

though the conventional aspect of peer-to-peer architectures are host-less, DirectPlay®

incorporates a host to act as the session controller—the host handles the requests from all

peers requesting to join the specific session in question. As discussed in the Microsoft®

DirectX® (C++) SDK Help, the session host is responsible for managing the session,

including:

• Managing the list of session members and their network addresses

• Deciding whether a new user is allowed to join the session.

• Notifying all members when a new user joins the session, and passing them

the new user's address.

• Providing new users with the current game state

• Notifying all users when a user leaves the session

17 Microsoft, DirectX, and DirectPlay are registered to Microsoft Corporation –

http://www.microsoft.com

 79

Once each peer has requested to join the session, is granted permission to join by

the session host, and has joined the new session, the peer will automatically receive all

messages sent from the other peers on the network. After the individual computer has

joined a session, it is responsible for sending out the appropriate messages and handling

any new network traffic. The base networking class—gfNetwork—only handles the

basic connection, creating players, destroying players, and shutdown messages. Any

additional network traffic needs to be handled by a network class derived from the

gfNetwork base class.

Since our primary focus was providing the addition of character animation to the

libGF library, we derived a new class from the gfNetwork base class, called

gfCal3dNetwork. This new class handles network messages geared more to handling the

character animation aspects in an application. Specifically, upon starting an application

and being accepted by the session host to join the session, a packet is sent out to create a

new player—a new gfCal3dPlayer. Then every ten seconds a new state packet is sent out

to ensure that the initial state of the avatar is known to all peers on the network. The

reason this packet is continually sent is to ensure any new peers joining the session are

updated to know about all existing avatars in the environment—in case any players join

the session after it is initially started. When a player state packet is received, from a

player that has not already been initialized, the peer receiving the state packet will

initialize the new player and add the avatar to the environment. From then on, any

packets pertaining to that newly created player will result in updates being made to that

player on all peers throughout the network. The packet types that are sent and received,

and the appropriate actions that are taken based on the specific packet, are shown in the

following table:

Packet type Action

GFPACKET_TYPE_POSITION Send: As the avatar position changes, the new

position is updated and a new position packet is sent

over the network.

 80

Receive: When a new position packet is received, the

position of the respective avatar is updated.

GFPACKET_TYPE_PLAYER_STATE Send: The state of the avatar is sent out every ten

seconds (for reasons already discussed). This state

includes the file name describing the specific character

to add and the initial position to establish for that

character.

Receive: Upon receiving the player state packet for

the first time, the character file is read, the new

character loaded, and the initial position applied to the

new avatar.

GFPACKET_TYPE_PLAYER_ACTION Send: As the avatar action changes based on the

input from the input interface, the current animation of

the avatar changes and must be updated on the

machines throughout the network. In order to do that,

an action packet is sent containing the name of the

animation being currently played for that player.

Receive: The new action packet, when received is

passed to the player and the new animation is started

for that player. Via this packet, players throughout the

network are continually displaying the correct

animations as they are being controlled on the

machine that owns that character.

GFPACKET_TYPE_FIRE Send: When the weapon associated with the local

player is fired, a fire packet is sent so that the

weapons of the remote players are fired. Targets hit

and a weapon firing sound are seen and heard on

remote machines as they are occurring on the local

machine.

Receive: A firing packet received causes the weapon

for the respective player to be fired and a bullet

displayed, in the appropriate location, if any objects

are hit by that weapon.

Table 1. gfCal3dNetwork Packet Descriptions

 81

Any new packets requiring passing and handling through the network can be

easily added to the network class, or a new network class can be derived. A packet is

simple a new class that is derived from the gfBasePacket class and contains the new data

to be passed. An example would be the action packet that was necessary for passing

character animations from a local player to remote players in the network, as shown

below.
class gfPlayerActionPacket: public gfBasePacket
{
public:
 gfHumanActions action;
 char command[50];
};

Figure 27. Example of a new network packet

In this case, the gfPlayerActionPacket needed additional information to be passed

to allow animations by the player. The gfBasePacket class already contains the type and

size of the packet, so the additional information of the specific action and command

string were added to a new derived packet class. Any additional packets can be created

and added in the same manner.

3. Application

The use of the gfCal3dNetwork class in any new application is accomplished by

following a few key steps. A new network object must first be instantiated in order to

have objects able to send and receive appropriate packets.
gfCal3dNetwork *network;

if(networkMode == HOST) {
 network = new gfCal3dNetwork("Local", NULL, true);
}
else if(networkMode == CLIENT) {
 network = new gfCal3dNetwork("Local", networkServerStr, false);
}

Figure 28. Creating a new network object

Once a network object has been instantiated, objects needing to send and receive

network packets must subscribe to the network—add it as a notifier. This is

accomplished by:
// This adds a notifier for the motion model to the network allowing messages

 82

// to be sent from the motion model to the network object
network->AddNotifier(motion);

// Likewise to have network packets received by another object, simply add a
// notifier for the network to the object interested.
weaponMgr->AddNotifier(network);

Figure 29. Adding message passing/receiving capability

Before sending a data packet over the network, set the data inside the motion

model and use the SendNotify command. SendNotify is the mechanism that allows

messages to be passed between objects once they have been added as listeners via the

AddNotifier method. Then, inside the derived network class, set the packet type and size

and send the packet.
// In the motion model set the data and then send a notify message – i.e. in
// this case an new action of ‘Run’ is being set to play the run animation:
currentState = eB_RUN;
currentStateStr = "Run";
data->SetAction(currentState);
SendNotify(currentStateStr, data);

// In the derived network class, when the data is received from the motion
// model, create a new action packet, set the type and size, and then send the
// packet to the network
gfPlayerActionPacket *packet = new gfPlayerActionPacket();
packet->mType = GFPACKET_TYPE_PLAYER_ACTION;
packet->mPacketSize = sizeof(gfPlayerActionPacket);
packet->action = ((gfHumanRefData*)message->getData())->GetAction();
sprintf(packet->command,"%s", command.getString());

Send(packet);

Figure 30. Sending a data packet from the motion model to the network

When other computers on the network receive the packet, a test is done to

determine the type of packet received, and then the appropriate action is taken.
// Determine which kind of packet is received and then calling the
// appropriate method to handle the received packet:
void gfCal3dNetwork::ReceiveMessage(gfMessageData *data)
{
 switch (data->mPacket->mType) {
 case GFPACKET_TYPE_POSITION:
 //Process a remote player's position
 ProcessPlayerPosition(data);
 break;

 case GFPACKET_TYPE_PLAYER_ACTION:
 //Process a remote player's action
 ProcessPlayerAction(data);
 break;

 default:

 83

 printf("Unknown packet type:%d\n", data->mPacket->mType);
 break;
 }
}

// A packet type GFPACKET_TYPE_PLAYER_ACTION is received,
// get the data and use SendNotify to pass the message to the character
// to play the appropriate animation:
void gfCal3dNetwork::ProcessPlayerAction(gfMessageData *data)
{
 gfPlayerActionPacket *packet = (gfPlayerActionPacket*)data->mPacket;

 static char IDString[32];
 sprintf(IDString, "%x", data->mPlayerID);

 gzRefPointer<gfPlayer> player = gfFindPlayer(IDString);
 if(player) {
 SendNotify(packet->command, data);
 }
}

Figure 31. Receiving a network packet and handling the data

So, with only a few extra steps, a network can be formed and packets sent and

received to allow animated characters to be seen by all users on the network. New types

of packets can be easily added using the methods shown. The key points are ensuring

that the right objects are added as listeners (via the AddNotify method), that the data is

sent to the network class (via the SendNotify method), the packet type is set and the

packet sent to the network. When a packet is received, the packet type must be

determined and then the data contained in the packet is processed.

4. Future Work

As discussed above, the current limitation of the networking API is the inability to

communicate with other applications using DIS or HLA. The library is centered on the

DirectX® API which provides the necessary networking functionality, but at the same

time limits the flexibility of the communication. Using DirectX® for its functionality is

with the assumption that communication will be handled by DirectX® and that the

joining/leaving of sessions will be enforced by the host.

Switching to a different networking architecture, or removing DirectX® as the

underlying framework, would provide a more flexible networking scheme and would

remove the requirement of a strict session management. A better implementation would

 84

be one of allowing a broadcast of packets to all users subscribed to a broadcast group and

the ability to easily switch to sending DIS or HLA packets. The new packet format

would facilitate integration with other simulations and bridge the gap between having

different applications running with different missions, but be integrated into a common

picture—one could be flying a helo mission, a different one could be working with urban

vehicles, one application calling for fire support, and the close quarter combat application

with animation Marine models clearing buildings—all connected and seeing the common

picture.

 85

E. PHYSICS

1. Motivation

A large aspect of the realism of an application—at least for a first person

application where the participant is led to believe that he is really a part of the virtual

world—lies in the reaction of the environment to participant movement and actions. If a

participant in a first person application runs into a wall, he expects his virtual

representation to stop at the wall. Similarly, expected results can be defined for virtual

movement such as stepping off of a ledge (the expectation of falling), stepping toward a

staircase (the expectation that the virtual representation will climb stairs in a way that

looks correct), or having an object thrown at or shot at the first person representation (the

expectation that the first person representation will be momentarily pushed or bumped by

the object being projected).

For a smaller application, or where movement is limited or scripted, these kinds

of reactions can be written into code as specific responses to specific inputs, but coding in

that fashion removes the flexibility of what can happen, removing the ability to explore

new possibilities. In order to allow realistic response to stimulus in the virtual world,

some form of physics needs to be implemented into the architecture.

At the very least, to prevent virtual participants from moving freely through walls

and falling through floors, collision detection and response needs to be implemented.

Collision detection can be viewed in one of two ways; either as a subset of physics or as a

separate issue entirely. As long as collision detection and response is directly tied into

the physics implementation, which way to view it is inconsequential. However, collision

detection ends where realistic response begins; collision detection tells the programmer

when and where objects collide. It does not tell the programmer what response to take in

relation to that information; that aspect, known as collision response, is most effectively

implemented through the use of a physics implementation that provides a realistic

response to known collisions.

 86

2. Implementation

a) Use of Existing Technology

Because much study has already been done in the area of collision

detection and response and in the area of physics, the authors chose to study existent,

open-source collision and physics interfaces in order to determine the best method of

producing realism with the greatest amount of code and package reuse. Collision

libraries studied included: OpCode, ColDet, SOLID, V-Collide, I-Collide, and QuickCD.

In addition to looking into collision detection libraries, the authors chose to look into

open-source physics libraries as well; the only physics library studied in depth was the

Open Dynamics Engine (ODE)18, written by Russ Smith.

b) Physics Through Inheritance and Encapsulation

Figure 32. Inheritance
and encapsulation of the
gfPhysicsObject class

The concept behind

implementing physics and collision

detection into libGF was to wrap the

functionality built into ODE with a thin wrapper that not only took advantage of the

optimizations built into ODE, but connected ODE functionality to libGF in a way more

consistent with scene graph engine functionality rather than physics SDK functionality.

To that end, an attempt was made to separate collision and physics functionality in libGF,

18 ODE is the Open Dynamics Engine, written by Russ Smith. It is licensed under the GNU LGPL

license. http://opende.sourceforge.net

 87

partly because the two are separated functionalities in ODE, but more importantly,

because the two functionalities are separate and, therefore, need to be separable.

Collision functionality can be found exclusively in gfCDSpace, gfCDGeom, and those

classes that derive from gfCDGeom. Physics functionality can be found in

gfPhysicsBody and gfPhysicsWorld. Both functionalities are implemented via

encapsulation in gfPhysicsObject, which gfDynamic derives from (see Figure 32), such

that any class deriving from gfDynamic (there are many) has the capability of having

physics properties. This makes those physics properties semitransparent to the user, such

that all a user has to do is turn on and turn off functionality from the derived class.

Additionally, gfSystem derives from gfPhysicsWorld and gfCDSpace (see Figure 33), so

that the functionality of the physics

Figure 33. gfSystem inherits
gfPhysicsWorld and gfCDSpace

functionality

world and the collision detection space can be handled at the system level and be

transparent to the libGF end user. When a member of gfSystem is created, a physics

world is created in gfPhysicsWorld and a collision space is created in gfCDSpace; these

are the spaces where the physics bodies and collision geometries are to be made and

placed. The inheritance of public functions by gfSystem allows the programmer to use a

handle to a member of gfSystem to add and manipulate those physics bodies and collision

geometries.

c) Abstracting Physics Functionality into Core libGF Classes

In addition to direct implementation of classes, several core libGF classes

needed functions or functionality added to support physics capabilities. Most

importantly, gfSystem, which runs the main system control loop, steps the physics world

(which is created in gfPhysicsWorld) ahead by the same amount of time as the system

step time. In physics simulations, it is important to keep time steps consistent and small,

so that objects do not penetrate or interfere with each other to any large degree; allowing

 88

serious interpenetration or interference between objects creates large calculations

between the objects and results in ‘explosions’ of the simulation, where objects fly away

or just vanish. In order to avoid this possibility, when stepping the physics world ahead

by the same time as the libGF cycle, the time stepped on a libGF cycle is divided by a

constant physics world step time small enough to prevent physics calculation instability.

The physics world is then stepped the number of iterations calculated, in physics world

step time intervals, as shown in Figure 34.
 int i;
 const static double WORLD_STEP_TIME = 0.01;

 //divide the time since the last system frame by the time each ODE (physics)
 // world step needs to be to get the number of whole world steps we currently need to
take
 int numWorldSteps = (int)(mSysData.mDeltaFrameTime/WORLD_STEP_TIME);

 //step the physics world by the set world step time for the number of
 // iterations as derived above in numWorldSteps
 for (i=0; i < numWorldSteps; i++)
 {
 //account for all collisions at present time
 cdCollide();

 //then step the world, letting objects move in the physics world
 gfWorldStep(WORLD_STEP_TIME);

 //and finally, remove all collision contact points, so the process can be repeated
 emptyContactGroup();
 }

Figure 34. gfSystem physics step loop in main execution loop

Of particular note is that the above iterations of physics world step times

seems to leave a remainder of time stepped forward in the libGF (visible) world, but not

in the physics world. To account for this leftover time, the code in Figure 35 was

implemented immediately following the loop of all world step time iterations. However,

stepping the physics world by this leftover time made the physics world unstable and

caused applications to crash, so the section of code was removed, and stability was

restored. No solid explanation for this behavior has yet been found, though the cause

may be the variability of the leftover time or the possibility of division by near-zero

numbers. Though it is not currently implemented, one way to make up for the leftover

 89

time is to save it and add it to the libGF step time (mSysData.mDeltaFrameTime in

Figure 35) on the next step.

 //calculate the leftover time (not a whole world step)
 double leftoverWorldStepTime =
 mSysData.mDeltaFrameTime - numWorldSteps * WORLD_STEP_TIME;

 //account for all collisions at present time
 cdCollide();

 //then step the physics world by the leftover time
 gfWorldStep(leftoverWorldStepTime);

 //and finally, remove all collision contact points, so the process can be repeated
 emptyContactGroup();

Figure 35. gfSystem physics leftover time step in main execution loop;
removed due to instability

In addition to stepping the physics world, additional code needed to be

implemented to ensure that members of gfDynamic (which derives from

gfPhysicsObject) that had physics turned on were positioned according to their physics

world equivalent—otherwise, there is no link between the objects moving in the physics

world and objects moving in the visible libGF scene. This needs to be done in two place:

a) every cycle (Figure 36) from the main update loop in gfSystem, and b) when objects

are specifically positioned, as per Position() in gfDynamic (Figure 37).

//(excerpted from gfSystem)

 //iterate through all gfDynamic members
 for (int dynamicNum = 0; dynamicNum < DynamicList->GetNum(); dynamicNum++)
 {
 gfDynamic *getDyn = (gfDynamic *)DynamicList->Get(dynamicNum);

 //the member’s physics is enabled, then update the position according to its physics
 // representative position
 if (getDyn->physicsEnabled())
 {
 getDyn->updatePosition(mSysData.mDeltaFrameTime);
 }
 }

//(excerpted from gfDynamic)

/**update the visual position from the physics position (based on the current
 physics position in the physics world*/

 90

void gfDynamic::updatePosition(const double deltaFrameTime)
{
 sgMat4 posMatrix = {0.f};
 getPhysicsPosition(posMatrix);
 setVisualMatrix(posMatrix);
 setVisualGfPosition(posMatrix);
}

Figure 36. Stepwise update of objects in the scene relative to their physics
representation

The code in Figure 36 follows the code in Figure 34 in the main execution

loop, so the physics position is first updated by stepping the physics world by the libGF

step time, and the visual positions of objects in the libGF scene are then updated

according to the position of their respective physics representations. In this manner,

objects in the scene—which are not, by themselves, physically based—appear to move or

be affected by the forces of physics.

/**set the visual scene position and the physics position, given a matrix */
void gfDynamic::Position(sgMat4 srcTransform)
{
 //zero the forces on the body prior to repositioning it
 zeroBody();

 //set the matrix form of the position
 setVisualMatrix(srcTransform);

 //set the HPR form of the position
 setVisualGfPosition(srcTransform);

 //set the position of the physics body to match the visual object
 setPhysicsPosition(srcTransform);
}

Figure 37. Repositioning an object, which updates its visual position and its
related physics object position

Updating a member’s position via gfDynamic::Position() can be done by

passing in an HPR representation or a 4x4 transformation matrix, as both representations

are stored in gfDynamic. The reader will note that while there is only one matrix

representation of a given position and rotation, there are many HPR representations.

Whereas gfDynamic::setVisualMatrix(gfPosition *) is capable of preserving correct

 91

position and rotation, gfDynamic::setVisualGFPosition(sgMat4) merely chooses the

best possibility to maintain similar HPR from previous time step.

3. Application

a) How the System Starts a World and Space

Creation of the physics world and collision detection space, which are

individual entities in the Open Dynamics Engine representation, is abstracted through

creation of a gfSystem. See Appendix A, SectionB (libGF Quick-Start Guide) for an

example of how to create a gfSystem.

b) Setting Global Physics and Collision Parameters

Physics calculations can be performed either faster or more accurately,

based on global setting, as shown in Figure 38. In general, when representing many

objects, set the physics step type to PHYSICS_SPEED so that the physics calculations do

not slow down the application. This does, however, reduce the accuracy of internal

physics calculations, so if there is no visible difference between the two settings, leave

the step type set to (the default) higher accuracy.
 //to make the physics faster

 sys->setPhysicsStepType(PHYSICS_SPEED);

 //or to make the physics more accurate

 sys-> setPhysicsStepType (PHYSICS_ACCURATE);

Figure 38. Setting the physics step type for accuracy or speed

In addition to setting the calculation speed, world gravity can be set, so

that gravitational forces can be handled easily. (Figure 39) Note that gravity is set by

default to –9.81 (m/s2) in the y-axis.

 sys->setGravity(0.0f, -9.81f, 0.0f);
Figure 39. Setting gravity for a simulation

c) How to Create a Geometry

 92

The use of collision detection requires that a collision geometry be created

to pass to the gfDynamic object. Creation of all of the basic gfCDGeom types is done as

shown in Figure 40. gfCDGeom is an abstract class, so the programmer must instantiate

a member of a concrete subclass—gfCDGeomBox, gfCDGeomPlane, gfCDGeomSphere,

or gfCDGeomCCylinder, which are the basic shape geometries, or gfCDGeomTransform

and gfCDGeomGroup, which will be discussed separately. The reader will note that

standard behavior is such that geometries can be rotated and positioned; however, a

gfCDGeomPlane is an infinite plane and can only be created and destroyed, not moved.
 gfCDGeom *boxGeom0 = new gfCDGeomBox("boxGeom0", 10.f, 1.f, 10.f);

Figure 40. Creating a gfCDGeom

d) How to Create a Transform Geometry

When a collision geometry is attached to a physics body (a

gfPhysicsBody), the geometry’s position becomes that of the body. If the geometry’s

position is its center and the body’s position is a point (which are both the case), this

centers the geometry on the body (ex, the single-point physics mass is the center of a

sphere; the sphere geometry is centered on that point). In order to use multiple simple

geometries to create complex composite geometries or to offset the mass from the center,

the user needs to be able to offset the simple geometries from the physics body position.

The way to do this is to create a gfCDGeomTransform. The gfCDGeomTransform is

passed a gfCDGeom at instantiation, and then an offset position for that geometry. The

gfCDGeomTranform member’s position and rotation, when added to a physics body, are

that of the physics body, but the position/rotation of the collidable geometry (the

geometry passed into the transform) is the transform’s position/rotation plus the offset.
 gfCDGeom *ballGeom = new gfCDGeomSphere("ballGeom", 1.3f);
 gfCDGeomTransform *ballTransform = new gfCDGeomTransform("ballTransform",
 ballGeom);
 gfPosition *ballGeomPos = new gfPosition(0.f, 1.1f, 0.f, 0.f, 0.f, 0.f);
 ballTransform->setOffset(ballGeomPos);

Figure 41. Creating a gfCDGeomTransform

e) How to Create a Group Geometry

In order to create constructive, complex collision geometries from simpler

shapes, the user can create geometry groups that encapsulate multiple geometries.

 93

Because the simple geometries will generally need to be offset from each other and from

the center of the physics body, the gfCDGeomGroup is often best used in coordination

with the gfCDGeomTransform. Grouping geometries can be done in one of two ways:

either by manually adding geometries to a geometry group, or by reading an entire group

into a gfCDGeomGroup via an XML file. An example of manually adding geometries to

a group is seen in Figure 42, while Figure 43 depicts reading a group from an XML file.

Note than geometry groups which are read in from an XML file can still be added to

manually.
 // make a geometry group by manually adding geometries

 //… make simple geometries, then make transforms to rotate and position
 // the geometries where they will need to be in relation to the center of the group…

 gfCDGeomGroup *houseGeomGroup = new gfCDGeomGroup("houseGeomGroup”);

 houseGeomGroup->addGeom(boxTransform0); //add a geometry (transform) to the
 // empty group
 houseGeomGroup->addGeom(boxTransform1); //then keep adding until all needed
 // geometry is added
 //…

Figure 42. Creating a gfCDGeomGroup through manual additions

 // make a geometry group from an xml file
 char houseGeomFile[256];
 gfGetFullFileName("houseGeomGroup.xml", houseGeomFile);

 gfCDGeomGroup *houseGeomGroup = new gfCDGeomGroup("houseGeomGroup",
 houseGeomFile);

Figure 43. Creating a gfCDGeomGroup via an XML file

The format for creating a geometry group XML file is depicted in Figure

44. The top level is <geomgroup>, which is different from all other levels. Note that a

group can contain transforms and other groups. Also note that, while transforms may

contain individual geometries or groups, they may not contain transforms; this does not

generally pose a problem, as groups containing transforms can be positioned in the

application.
<!—adds 5 transforms of gfCDGeomBox members; three solid walls and one -->
<!—wall with a doorway in the middle -->
<geomgroup>
 <numgeoms>5</numgeoms>
 <geom0>

 94

 <name>wall0transform</name>
 <type>transform</type>
 <offset>
 <x>-4.515</x>
 <y>1.350</y>
 <z>5.301</z>
 <h>0.0</h>
 <p>0.0</p>
 <r>0.0</r>
 </offset>
 <geom0>
 <name>wall0geom</name>
 <type>box</type>
 <xlength>5.666</xlength>
 <ylength>2.700</ylength>
 <zlength>0.318</zlength>
 </geom0>
 </geom0>
 <geom1>
 <name>wall1transform</name>
 <type>transform</type>
 <offset>
 <x>3.552</x>
 <y>1.350</y>
 <z>5.301</z>
 <h>0.0</h>
 <p>0.0</p>
 <r>0.0</r>
 </offset>
 <geom0>
 <name>wall1geom</name>
 <type>box</type>
 <xlength>7.598</xlength>
 <ylength>2.700</ylength>
 <zlength>0.318</zlength>
 </geom0>
 </geom1>
 <geom2>
 <name>wall2transform</name>
 <type>transform</type>
 <offset>
 <x>7.201</x>
 <y>1.350</y>
 <z>-2.500</z>
 <h>0.0</h>
 <p>0.0</p>
 <r>0.0</r>
 </offset>
 <geom0>
 <name>wall2geom</name>
 <type>box</type>
 <xlength>0.294</xlength>
 <ylength>2.700</ylength>
 <zlength>15.921</zlength>
 </geom0>

 95

 </geom2>
 <geom3>
 <name>wall3transform</name>
 <type>transform</type>
 <offset>
 <x>-7.201</x>
 <y>1.350</y>
 <z>-2.500</z>
 <h>0.0</h>
 <p>0.0</p>
 <r>0.0</r>
 </offset>
 <geom0>
 <name>wall3geom</name>
 <type>box</type>
 <xlength>0.294</xlength>
 <ylength>2.700</ylength>
 <zlength>15.921</zlength>
 </geom0>
 </geom3>
 <geom4>
 <name>wall4transform</name>
 <type>transform</type>
 <offset>
 <x>0.0</x>
 <y>1.350</y>
 <z>-10.301</z>
 <h>0.0</h>
 <p>0.0</p>
 <r>0.0</r>
 </offset>
 <geom0>
 <name>wall4geom</name>
 <type>box</type>
 <xlength>14.696</xlength>
 <ylength>2.700</ylength>
 <zlength>0.318</zlength>
 </geom0>
 </geom4>
</geomgroup>

Figure 44. Creating a geometry group XML file

f) Collision Geometry Settings

The only currently implemented setting for collision geometries is the slip

coefficient. The slip coefficient is what determines a geometry’s friction against other

geometries—its slipperiness. Figure 45 shows how to set slip.
 geom.->setSlip(0.01f);

Figure 45. Setting the slip coefficient for a collision geometry

g) How to Create a Body

 96

Whereas collision detection requires a geometry, the use of physics

properties (forces acting on a body) requires that a physics body be created to pass to the

gfDynamic member. gfPhysicsBody is created as shown in Figure 46. A physics body,

by itself, is a point mass that has (internally) an inertial matrix that gives the mass inertial

properties. Giving the mass shape is covered in the next section.
 gfPhysicsBody *boxBody = new gfPhysicsBody("boxBody");

Figure 46. Creating a gfPhysicsBody

h) Physics Body Settings

All currently implemented settings for physics bodies deal with mass

distribution. Figure 47 depicts methods of setting and manipulating the mass of a physics

body.
 //methods for setting the mass of a body; automatically creates the inertial matrix
 void setMassToPoint(float pMass);
 void setMassToSphere(float pMass, float pRadius);
 void setMassToCCyl(float pMass, int axis, float pRadius, float pLength);
 //axis needs to be 0, 1, or 2, for X, Y, or Z, respectively
 void setMassToBox(float pMass, float pX, float pY, float pZ);

 //methods for setting the offset of the mass from the physics body’s point position
 void offsetMass(gfPosition *pPos);
 void zeroMassOffset();

Figure 47. Setting the mass on a physics body

i) Attaching/Detaching a Geometry to/from a Body

Forces can act on a body directly as a point mass, but the application of

forces by collision detection (preventing a body from passing through objects such as

walls and ground) requires that the collision geometry be attached to the body. Adding

the forces of collision detection to the body gives the body form and shape, by putting the

body inside the collision geometry. Once connected, a geometry’s position is

synonymous with the associated body’s position; moving one moves the other. Thus,

wrapping the physics body such that the center of mass is particularly located inside the

geometry requires an understanding of geometry transforms and groups, as already

discussed in sections II.E.3.d and e. Because geometry may need to be changed

dynamically (i.e., change the shape of an object due to damage), geometry can be both

 97

attached to and detached from a body; this allows for the dynamic interchange of

geometries to a physics body (or vice versa).

The standard interface for attaching/detaching collision geometries and

physics bodies is to set the geometry and the body to the gfDynamic member (see next

section). Because geometries and bodies can be created independently, the current

implementation of libGF supports the ability to attach geometries directly to physics

bodies without the requirement of working through a gfDynamic, but this interface is not

depicted here, as it will be deprecated in future use, when geometries and physics bodies

will be created internally to gfDynamic members and their public interface hidden.

j) How to Set the Geometry and Body to the gfDynamic Member

Once a gfCDGeom member and a gfPhysicsBody are created, the way to

tie them to an object in the scene is to set them as the collision geometry and physics

body for a gfDynamic member. The gfDynamic class member (with its inherited

functionality from gfPhysicsObject) is the glue that allows for interaction between visible

scene objects, collision geometries, and physics bodies. Classes that are usable in the

scene, such as gfObject, gfMotion, or gfPlayer, all inherit from gfDynamic. Setting the

geometry and physics body to a gfDynamic member not only ties them to the visible

scene object, but also ties the collision geometry and physics body together. The

gfDynamic public interface for manipulation of collision geometries and physics bodies

is described in Figure 48.
 gfObject *dynamicObject = new gfObject("dynamicObject");

 //set the geometry or the body; setting a geometry or body when one is already set
 // will automatically remove the old geometry or body and disable it
 dynamicObject->setCDGeom(geom);
 dynamicObject->setPhysicsBody(body);

 // remove the geometry or the body and leave a null
 dynamicObject->removeCDGeom();
 dynamicObject->removePhysicsBody();

 //methods for getting the member’s geometry or body (to change settings)
 dynamicObject->getGeomID(); //geometry can then be retrieved through
 // gfFindCDGeom(geomID)
 dynamicObject->getBodyID(); //geometry can then be retrieved through
 // gfFindCDGeom(geomID)

Figure 48. Setting/removing the geometry and body of a gfDynamic member

 98

k) How to Explicitly Enable/Disable Collision Detection/Physics

In order to allow the flexibility of being able to turn physics or collision on

or off as necessary, enabling and disabling functions are implemented, so that the user

does not have to set and remove geometries and bodies in order to enable or disable their

abilities. The interface for enabling or disabling physics or collision is displayed in

Figure 49.
 gfObject *dynamicObject = new gfObject("dynamicObject");

 //disable functions
 dynamicObject->disableCollision();
 dynamicObject->disablePhysics();

 //disable functions
 dynamicObject->enableCollision();
 dynamicObject->enablePhysics();

 //boolean functions to determine whether collision or physics are enabled
 dynamicObject-> collisionEnabled();
 dynamicObject-> physicsEnabled();

Figure 49. Enabling/disabling collision detection and physics

l) Collision Detection and Physics Enable/Disable Defaults

In discussing how to set collision geometries and physics bodies to

gfDynamic members, the enable/disable defaults should also be discussed, so that the

application programmer knows what to expect. When performing a setCDGeom() on a

gfDynamic member, collision detection is automatically turned on, and if a physics body

is already set, the collision geometry is attached to the physics body. This is true not only

when a collision geometry is initially set for the gfDynamic member, but is also true if

the members collision geometry is switched out. Likewise, when performing a

setPhysicsBody() on a gfDynamic member, physics properties are automatically turned

on, and if a collision geometry is already set, the geometry and body are attached to one

another. It is also true that when a geometry or body is removed from a gfDynamic

member, the geometry and body are detached from each other and the collision or

physics, respectively, is disabled.

 99

m) gfDynamic Member Physics/Collision Configurations

Because physics and collision are implemented into libGF independently,

there are four possible physics configurations a gfDynamic member can have:

• Collision detection (without physics) can be implemented by setting the

gfCDGeom to a member and not setting the gfPhysicsBody, or by disabling the

physics body. For non-moving (static) objects, this creates a collidable object

in the scene that cannot be moved. This configuration is useful for walls,

buildings, ground, and any objects that should not be moved by physics forces

(though the objects, and their respective collision geometry, can be manually

repositioned).

• Physics (without collision) can be implemented by setting the gfPhysicsBody

to a gfDynamicmember, but not a gfCDGeom. In this case, all forces are

directly added to the member, and care needs to be taken to account for gravity

or any other forces that destabilize the member’s position and orientation.

• Collision detection and physics can both be implemented at the same time, by

setting both a gfCDGeom and a gfPhysicsBody to the gfDynamic member; this

is the standard physically based model which moves in the environment based

on all forces, both internal and external, to include collisions with other

physical bodies in the environment.

• Neither collision detection nor physics are implemented. No gfCDGeom and

no gfPhysicsBody are set to the gfDynamic member, which is moved through

the environment by device input and non-physically based algorithms.

Movement is sterile and easy to control, since the lack of variable forces and

collision-based restraints prevents unexpected movement of objects in the

scene. This method is useful for absolute control over a gfDynamic member.

n) How to Set a Ground Plane

The current libGF physics implementation does not support creating

collidable triangle meshes, so, currently, the only way to create a ground plane is to add a

gfCDGeomPlane to the collision space. This can be accomplished in one of two ways

 100

(see Figure 50); both methods are equally acceptable. setGroundCollisionPlane(double)

is the simplified method in gfSystem that allows the creation of a level plane at an input

Y value; if another representation is needed (different axis), the user can create a

gfCDGeomPlane at whatever position and orientation desired. Note that

gfCDGeomPlanes are infinite; if a non-infinite plane is used, the creation of a thin

gfCDGeomBox can be just as easily implemented, with dimensions as desired. Also note

that gfCDGeomPlanes are planes that keep collision geometries on one side of them

specifically, according to the input parameters. In the Figure 50 examples, collision

geometries will be “on top” of the ground planes, but below the ceiling plane.
 //a simplified method of creating a level ground plane in the Y-axis
 sys->setGroundCollisionPlane(0.0); //input parameter is Y-value of plane

 //a more generalized method of creating a ground plane, still level in the Y-axis
 // (0x + 1y + 0z = 0)
 gfCDGeom* testPlane = new gfCDGeomPlane("testPlane", 0.0f, 1.0f, 0.0f, 0.0f);
 testPlane->enableCollision();

 //a ground plane that slopes 45 degrees up toward the –X-axis
 // (1x + 1y + 0z = 0)
 gfCDGeom* testPlane = new gfCDGeomPlane("testPlane", 1.0f, 1.0f, 0.0f, 0.0f);
 testPlane->enableCollision();

 //a ceiling plane, which keeps all collision geometries below Y=10.0
 // (0x + (-1)y + 0z = -10)
 gfCDGeom* testPlane = new gfCDGeomPlane("testPlane", 0.0f, -1.0f, 0.0f, -10.0f);
 testPlane->enableCollision();

 //a method of creating a non-infinite ground plane (1000x1000 units)
 gfCDGeom *boxGeom0 = new gfCDGeomBox("boxGeom0", 1000.f, 1.f, 1000.f);
 boxGeom0->enableCollision();

Figure 50. Creating a ground plane

o) Adding Forces and Setting Positions of Physics Objects

Once physics-based objects are created, the way to move them around in

the scene is to add forces to them. Forces can be added in either the World Coordinate

System or the Local Coordinate System. Methods for adding and setting forces to

physics-based objects are shown in Figure 51.
 gfObject *dynamicObject = new gfObject("dynamicObject");

 //zero out all forces on a physics body
 dynamicObject->zeroBody();

 101

 //set (all of) the force on a body in world coordinates
 dynamicObject->setForce(fX, fY, fZ);

 // set (all of) the torque on a body in world coordinates (about each axis)
 dynamicObject->setTorque(fX, fY, fZ);

 // add forces to a body in world coordinates
 dynamicObject->addForce(fX, fY, fZ);

 // add torque to a body in world coordinates (about each axis)
 dynamicObject->addTorque(fX, fY, fZ);

 // add forces to a body in local coordinates
 dynamicObject->addRelForce(fX, fY, fZ);

 // add torque to a body in local coordinates (about each axis)
 dynamicObject->addRelTorque(fX, fY, fZ);

 // set heading and pitch (in the physics representation)
 dynamicObject->setPhysicsHeadingAndPitch(heading, pitch);
 //sets object to hpr of (heading, pitch, 0.0)

 //set the position and orientation of the physics-based object
 dynamicObject->setPhysicsPosition(posMatrix);

 //get the position and orientation of the physics-based object
 dynamicObject->getPhysicsPosition(posMatrix);

Figure 51. Methods for adding/setting forces to physics-based objects

4. Future Work Specific to the gfPhysics API

There are two basic areas in which future developments need to occur in libGF

physics. The first area that needs development is in abstraction. Too much of the

collision geometry and physics body functions are visible at all levels, which causes

confusion as to which way to implement functionality. Currently, physics and collision

can be enabled directly through gfPhysicsBody and gfCDGeom, but can also be

implemented through the gfDynamic member. This can cause not only confusion but

potential logic problems, as the gfDynamic member will not know when a setting is

changed outside of its control.

The second area for future development is additions to functionality. Open

Dynamics Engine supports the collision of triangle meshes, but the functionality to allow

triangle mesh collision is not yet implemented into libGF; doing so not only involves

wrapping the ODE functionality, but also includes adding the functionality to get a

 102

triangle mesh (either from a file or more directly from a scene object) and convert that

mesh into usable information in a new class, gfCDGeomTrimesh. ODE also supports the

application of joints, and those are not yet implemented into libGF. The structure will be

an abstract base class and a set of concrete joint-type classes, in order to create all ODE

supported joints, such as ball-and-socket and hinge.

F. INPUT

1. Motivation

It was decided upfront that one of the major functionalities necessary for libGF to

be successful in building deployable virtual reality training applications was scalability.

It would not be a robust VE system if it did not provide the ability to scale down or up as

the need arose. A training VE system needs to provide the capability to run on multiple

system hardware configurations, whether it be a laptop where all that is available is the

standard keyboard and mouse, or it is a desktop computer using an instrumented rifle and

head mounted display, both equipped with inertial trackers. This was the motivation

when developing the input interface to the libGF library.

Several input interfaces were looked at when determining which would be

appropriate for a deployable system. Obviously, all PCs have the use of the standard

keyboard and mouse so that was the logical first interface device to account for. In

addition to the keyboard and mouse, the new generation of Marines and warfighters have

grown up accustomed to gaming, especially on console type systems, this made the

gamepad a good choice for those accustomed the console type applications. Finally, the

need to provide “realistic” training required the implementation of an interface similar to

what would be used in real world room or building clearing. The obvious answer was to

somehow integrate a pseudo-realistic weapon that users would feel accustomed to as an

option for the third input interface device.

Providing three different input interfaces would provide VR training applications

the scalability necessary to make an application deployable in any situation. Whether it

is on a ship, with very limited configured on a network of laptops, or on machines

configured to use gamepads, or in garrison with a fully scaled up VE instrumented rifles

 103

and head mounted displays, the interfaces could be easily interchanged, providing

scalability and making the application deployable to any environment.

2. Implementation

Since the major portion of the work for this thesis was dealing with addressing the

need to integrate character animation into the libGF library, the integration of the input

interface devices had to be done in such a manner as to allow mapping of an inputted

action to a human-like avatar action. In other words, if the user used the keyboard key or

the joystick on the instrumented rifle to simulate walking forward, then the mapping of

that action should be that the avatar was walking. An additional constraint was to have

the ability to reconfigure the action mapping prior to, or even during, running a VE

application.

Although there are several methods of handling input devices and there are

different libraries available, the logical choice for handling input devices, under the

Windows® operating system19, is the Microsoft® DirectX® SDK. Because of the desire

to use a library that would provide the needed functionality for both the interface input

devices, as well as the networking capability, the DirectX® SDK was the library chosen

for integration into libGF. It gave the ability to easily define the mapping of input

devices to desired actions and the ability to reconfigure those at run-time. This provided

a big benefit because now applications could be easily reconfigured for different users

without the need to recompile or restart the virtual environment. Going from a right-

handed person to a left-handed person would be as easy as remapping a joystick or

keyboard keys.

For both the gamepad interface and the instrumented rifle interface, the

Logitech® WingMan RumblePad™ 20 was chosen. In the case of instrumenting the rifle,

a wireless RumplePad™ was disassembled and integrated into the rifle to provide

functionality of firing the weapon and player movement through the VE using the

19 Windows is registered to Microsoft Corporation. The term Windows is used generically for all
version of the Window operating system.

20 RumblePad is a registered trademark of Logitech, Inc. - http://www.logitech.com

 104

joystick. Using the same gamepad for both the gamepad interface and the instrumented

rifle interface, the mapping of input device to avatar actions remained consistent, and as

previously mentioned, could be easily remapped through the integration of the DirectX®

SDK.

Additionally, when using the fully scaled up virtual environment with the HMD,

there is a need to track rifle and head movement. This tracking had to be performed in a

small footprint, without any additional space constraints, this ruled out tracking systems

with the requirement for overhead mounted sensors or cameras. The trackers chosen

were the inertial trackers by InterSense21. The system used during integration was the

InterSense IS-300 Pro with two inertial cubes—one for tracking rifle position and the

other for head movement. The cube used for the rifle movement was mounted on the

rifle barrel and provided tracking of rifle pitch and player heading. The cube for head

movement was mounted to the top of the HMD and allowed the user to move their head,

independent of the rifle, and provide a “look around” capability in the VE.

Figure 52. IS-300 Pro Precision Motion Tracker System (InterSense) (From

Ref.)

Additional tracking systems—such as the LIBERTY™ and FASTRAK™22

systems by Polhemus23—can be found that provide similar functionality and would as

straightforward to integrate.

21 InterSense, Inc. - http://www.isense.com/
22 LIBERTY and FASTRAK are registered trademarks of Polhemus.
23 Polhemus - http://www.polhemus.com

 105

 The keyboard, mouse and gamepad input functionality was integrated by creating

a DirectX® wrapper class called diGenericClass. This new class served as the interface

for the underlying DirectX® application programming interface. Encapsulating that

wrapper is a generic input class, that handles device state querying for the keyboard,

mouse, and gamepad, called gfInputGeneric. When a new input device is added,

gfInputGeneric handles creating an instance of the DirectX® wrapper class and adding

that device to the internal list of input devices. Querying of the device—to sense key

presses, mouse movement, or joystick movement—is handled by calls to the DirectX®

wrapper class by the gfInputGeneric interface class.
// Instantiating a new input device
gfInputGeneric::gfInputGeneric(const char *name)
{
 mDisplayGUI = false;
 CreateNewInput();
 if (name) SetName(name);
}

// Create a new generic input device by creating a new DirectX wrapper object
void gfInputGeneric::CreateNewInput()
{
 mNumDevices = 0;
 mGeneric = new diGenericClass();
 InputList->Add(this);
}

// Read handles querying the input device to determine the state of the device
// i.e. keypress, joystick movement, mouse movement
void gfInputGeneric::Read(const int deviceIdx,
 DWORD *numActions,
 DIDEVICEOBJECTDATA *deviceData)
{
 mGeneric->getState(deviceIdx, &deviceData, numActions);
}

Figure 53. Generic input device interface to DirectX®

The interface to the InterSense inertial trackers was accomplished by

implementing the gfInputISense class which handles calls to the Isense library distributed

by InterSense for use with the IS-300 Pro and inertial tracker systems. When a new

tracker is added as an input device, the gfInputISense class initializes the interface for the

tracker system.

// Creating a new Isense input device

 106

void gfInputISense::CreateNewISense(int comm)
{

 handle = ISD_OpenTracker(NULL, comm, FALSE, FALSE);

 if(handle >0) {
 gfNotify(GF_DEBUG, "gfInputISense created");
 mConfigured = true;
 }
 else {
 gfNotify(GF_DEBUG, "failed to init gfInputISense\n");
 mConfigured = false;
 }
}

// Add a station (inertial cube) to the input device
void gfInputISense::AddISenseStation()
{
 int success = 0;
 char command[64];

 success = ISD_SendScript(handle, command);

 if(success == 1) {
 // channel added on trackStation
 sprintf(command, "MCI%d,%d\n", trackStation, trackStation);
 success = ISD_SendScript(handle, command);

 if(success == 1) {
 // cube associated with station
 sprintf(command, "MCe\n");
 success = ISD_SendScript(handle, command);

 if(success == 1) {
 // new tracker configuration applied
 mConfigured = true;
 sprintf(command, "O%d,2,4,1\n", trackStation);
 success = ISD_SendScript(handle, command);
 }
 }
 }
 else {
 // failed to add new channel
 mConfigured = false;
 }
}

Figure 54. Creating a new Isense input device and adding a cube to the device

Once the tracker system is initialized and the cubes added as stations on the

device, querying the device retrieves the positions of the cubes. The query returns the

heading, pitch and yaw of the inertial cube in question.
// Read and return the position returned from querying the inertial cube
void gfInputISense::GetPosition(gfPosition *pos)

 107

{
 if(!mConfigured) {
 // device is not configured
 return;
 }

 if(!pos) {
 // position not defined
 return;
 }

 ISD_GetData(handle, &data);

 pos->Set(0.f, 0.f, 0.f,
 mHscale * data.Station[trackStation].Orientation[0],
 mPscale * data.Station[trackStation].Orientation[1],
 mRscale * data.Station[trackStation].Orientation[2]);
}

Figure 55. gfInputISense handles querying the tracker for cube position

3. Application

In order to use the input interface devices in an application, they need to be

implemented through the use of the gfMotionHuman motion model. The

gfMotionHuman class was created to map the input actions of the different devices to the

motion of a human character, so that all input from the keyboard and mouse, gamepad, or

instrumented rifle is routed through that class and the appropriate actions are mapped.

The ISense tracker input for the control of rifle pitch and player heading—an inertial

cube mounted on the barrel of a rifle—is also captured via the gfMotionHuman class.

Orientation of the ISense tracker attached to the HMD is directly input into the observer

and controls the heading and pitch of where the player is looking.

a) Creating a gfMotionHuman Motion Model

To create a new gfMotionHuman:
// Instantiate a new gfMotionHuman motion model
gfMotionHuman *motionPtr =
 new gfMotionHuman(motionNameStr, bFlipJoystick);

// Define an input device to the motion model by using the name of
// of that input device (usually of type gfInputGeneric) to SetInput
motionPtr->SetInput(motionInputStr);

// Define a new gfPosition for the motion model
gzRefPointer<gfPosition> pos =
 new gfPosition(positionX, positionY, positionZ,

 108

 positionH, positionP, positionR);

// Set the position of the motion model
motionPtr->Position(pos);

// Set the initial values of the motion model
motionPtr->SetWalkingSpeed(walkingSpeed);
motionPtr->SetRunningSpeed(runningSpeed);
motionPtr->SetWalkRunThreshold(walkRunThreshold);
motionPtr->SetRotationInterval(rotationInterval);
motionPtr->SetGlanceInterval(glanceInterval);
motionPtr->SetSideStepInterval(sidestepInterval);
motionPtr->SetForwardVelocity(walkingSpeed);
motionPtr->SetRotationVelocity(rotationVelocity);
motionPtr->SetStepUpHeight(stepUpHeight);

// Set another input source for the motion model, in this case a Isense tracker
motionPtr->SetInput(motionTrackerStr);

Figure 56. How to create a new gfMotionHuman model

Once the motion model is created, it needs to be set as the motion model

for the player, or avatar character. This is accomplished by setting the motion as in Fig

51:
playerPtr->SetMotion(playerMotionStr);

Figure 57. Setting the player motion model

Setting the tracker as input to the observer is done by passing the

gfInputISense object created for that tracker into the observer, as shown in Figure 58.
 observerPtr->Input(input);

Figure 58. Setting a tracker as an input to an observer

b) The Initial Motion Model Action Mappings

Creating the motion model for the avatar and setting it as the motion

model for the player automatically maps input device actions to the avatar. The initial

action mappings are already defined in gfMotionHuman, but can be changed for any

application and can also be changed at run-time, by running the DirectX® GUI. The

DirectX® mapping set chosen was the First Person Shooter genre, with the mappings

listed in the following table.

DirectX® device semantic Mapped to

DIMOUSE_STEER Heading controlled by mouse movement

DIKEYBOARD_ESCAPE Exits application

 109

DIBUTTON_FPS_FIRE Fires weapon – gamepad input

DIAXIS_FPS_SIDESTEP Side step – gamepad input

DIBUTTON_FPS_ROTATE_LEFT_LINK Rotate left – gamepad input

DIBUTTON_FPS__ROTATE_RIGHT_LINK Rotate right – gamepad input

DIBUTTON_FPS_FORWARD_LINK Move forward – gamepad input

DIBUTTON_FPS_BACKWARD_LINK Move backward – gamepad input

DIBUTTON_FPS_STEP_LEFT_LINK Side step left – gamepad input

DIBUTTON_FPS_STEP_RIGHT_LINK Side step right – gamepad input

DIAXIS_FPS_LOOKUPDOWN Look up and down – gamepad input

DIAXIS_FPS_MOVE Move – gamepad input

DIKEYBOARD_W Move forward – keyboard

DIKEYBOARD_S Move backward – keyboard

DIKEYBOARD_RETURN Fire weapon – keyboard

DIKEYBOARD_LEFT Rotate left – keyboard

DIKEYBOARD_RIGHT Rotate right – keyboard

DIKEYBOARD_UP Glance up – keyboard

DIKEYBOARD_DOWN Glance down – keyboard

DIKEYBOARD_LSHIFT Run speed vice walk speed – keyboard

DIKEYBOARD_A Side step left – keyboard

DIKEYBOARD_D Side step right – keyboard

DIAXIS_FPS_ROTATE Rotate – gamepad input

DIMOUSE_YAXIS Glance up and down – mouse

DIMOUSE_BUTTON0 Fire weapon – mouse

DIKEYBOARD_F1 Bring up DirectX® GUI - keyboard

Table 2. Initial input device mappings for DirectX®

 110

These mappings are initialized in gfMotionHuman by creating an array of

actions that DirectX® can use to connect input device actions to character actions. Each

array entry contains the action enumeration, string representing the action, and the action

mapping semantic (as defined by DirectX®).

c) Defining the Mappings

As the motion model receives inputs from the interface devices attached, it

checks the list of available action mappings and, if a match is found, it performs the steps

defined for that action mapping. An example of how to map actions to input devices is

shown in Figure 59.
// Defines the mapping for the keyboard ‘D’ key to be mapped to side step right
mActionMapping[46].uAppData = eB_SIDESTEP_RIGHT;
mActionMapping[46].dwSemantic = DIKEYBOARD_D;
mActionMapping[46].lptszActionName = "StepRightLink";

// Defines the mapping for the gamepad rotate action to be mapped to rotate
mActionMapping[47].uAppData = eA_ROTATE;
mActionMapping[47].dwSemantic = DIAXIS_FPS_ROTATE;
mActionMapping[47].lptszActionName = "Rotate";

Figure 59. Example action mapping in gfMotionHuman

d) Handling Actions for Input Devices

The actions performed for each mapping can vary from setting the

position of the motion model, and thereby the player, to sending a message to start a

character animation sequence. Any other object set that has subscribed to the motion

model messages will be able to receive, and act upon, the SendNotify messages. This is

how actions are mapped from input device to motion model to character animation or to

the network. During the Update() method of the gfMotionHuman class, each device is

queried to determine its input to the motion model for that current frame.

When the ISense tracker is attached, and initialized to provide input to the

model motion as described above, the position is queried and used to set the heading and

pitch of the rifle. Specifically, it first finds the gfInputISense object used for the rifle,

gets the current orientation of the inertial cube, passes the heading and pitch to the

physics engine, and then resets the rifle offset. In addition, a notification message is also

sent to notify any objects subscribed to be notified that the rifle orientation has changed.

 111

// Get the gfInputISense defined for the tracker
gfInputISense *rifle = (gfInputISense*)mInput->Get(i);

// Get the current position of the rifle
rifle->GetPosition(riflePos);

// Create a new gfPosition and set the position with the new heading
gzRefPointer<gfPosition> currentPos = new gfPosition();
currentPos->Set(mPosition->X(), mPosition->Y(), mPosition->Z(),
 riflePos->H(), mPosition->P(), mPosition->R());

// Pass new heading and pitch to physics engine
setPhysicsHeadingAndPitch(riflePos->H(), mPosition->P());

// Set the new rifle offset
mRifleOffset->Set(mRifleOffset->X(), mRifleOffset->Y(), mRifleOffset->Z(),
 mRifleOffset->H(), riflePos->P(), mRifleOffset->R());

// Send message notification of new rifle position
SendNotify("rifleaim", riflePos);

Figure 60. Resetting the rifle offset based on the inertial cube

Actions for devices covered by the gfInputGeneric class are handled

differently. The action returned from the device is mapped according to the mappings

setup via the action mapping discussed earlier. When a device action is received, the

applicable enumerated action name is used to define the action to be taken. Actions can

be easily changed or added by modifying the action mapping array and then adding the

enumerated action name to the switch statement, as shown below.
// Switch on enumerated actions returned by each device
switch (deviceAction) {
// Steering from the mouse, so set the relative X value to later update position
case eA_STEER:
 relX = (int)deviceData[action].dwData;
 break;

// Glance up/down received from mouse, send out notification
case eA_GLANCEUPDOWN:
 mousePitch = (int)deviceData[action].dwData;

 data->SetAction(eA_GLANCEUPDOWN);
 SendNotify("GlanceUpDown", data);
 break;

// Rotate from mouse received, set new absolute X for updating position and
// send out notification
case eA_ROTATE:
 absX = (int)deviceData[action].dwData;

 if(absX < MIN_INPUT_THRESHOLD && absX > -MIN_INPUT_THRESHOLD) {
 absX = 0;

 112

 }

 data->SetAction(eA_ROTATE);
 SendNotify("Joystick - Rotate", data);
 break;
}

Figure 61. Handling received actions from gfInputGeneric devices

e) A Motion Model other than gfMotionHuman

Although the mappings for gfMotionHuman have been defined to emulate

the actions that would be taken by a human character, by modifying the action mappings

and the actions to perform, the motion model can easily be modified to emulate a

helicopter or HMMWV. An example would be—instead of mapping the left and right

movement of the mouse to the rotation of a character, by changing the mapping and the

actions, it could easily be used to steer a HMMWV.

4. Future Work

Work left to be done in the input portion libGF lies mostly with implementing

wireless functionality. Currently, the trackers and joystick gamepad are tethered by the

wires that connect them to the computer. These wires can pose a problem with

entangling the user when making several consecutive turns in the virtual environment, if

an additional person is not close by to ensure that the wires are periodically untangled.

Switching to a completely wireless implementation would eliminate this problem and

would greatly increase the free movement inside the virtual environment and also the

realism of the immersion. Having to stop a building clearing exercise to untangle wires is

a quick reminder that it is only a simulated environment and not a real, or fully

immersive, exercise.

 113

III. SYSTEM USABILITY ANALYSIS

A. INTRODUCTION

An experiment was conducted on a group of eight subjects to determine the

maneuverability in a virtual tactical environment using different hardware interfaces.

Users were asked to complete a series of tasks to demonstrate their ability to maneuver

and perform building clearing procedures. The interest of this experiment was to

determine which of the different hardware interfaces proved to provide the best

maneuverability through the virtual MOUT environment. The experiment did not

address the subjects ability to tactically clear the building as would be expected in a

building clearing exercise, only the differences in a user’s ability to maneuver based on

the hardware interface used. For this experiment, three different interfaces were used:

standard keyboard and mouse; GamePad; instrumented (joystick enabled) rifle with

Head-Mounted Display (HMD) using InterSense trackers.

B. BACKGROUND

1. Subjects

Subjects chosen for this experiment were Marine Corps Officers attending the

Naval Postgraduate School. The reasoning behind choosing Marines was their previous

exposure to MOUT situations, which allowed for the tactical movement desired through

the environment without additional training. Although we wanted the participants to

move as tactically as possible through the environment, we made no effort to measure

this, and, since it was of low relevance to maneuverability, we trusted and were satisfied

with the fact that the similar training of all participants gave us the similarity of tactical

movement that we were looking for in participants.

2. Hardware

The computer used for this experiment was a small footprint Shuttle XPC

configured with an AMD Athlon XP 2500 Barton 333MHz PSB Processor, 512 MB

 114

RAM, 60 Gb hard drive and an XFX Nvidia FX 5600 graphics card (128 MB version).

The operating system was Microsoft Windows XP. The monitor used during the

experiment was a Dell Active matrix LCD display, Model 2000FP. Measurements for

the display are 16.1 inches horizontal, 12.1 inches vertical, and 20.1 inches diagonal. The

users were approximately 20 inches from the display, giving an apparent Field of View

(FOV) of 34 degress. View frustrum set in the environment is 33 degress.

Standard keyboard and optical mouse were used for the first hardware interface in

this experiment. They were configured so that the ‘W’, ‘S’, ‘A’, and ‘D’ keys provided

forward, reverse, left and right movement respectfully. Holding down the ‘Shift’ key

caused the subject to move in a tactical run speed vice the normal tactical walking speed.

Moving the mouse changed the orientation (heading and pitch) of the avatar in the

environment and allowed for looking around and changing the pitch of the rifle when

aiming. The left mouse button fired the weapon.

The second interface used was a typical gaming interface – a gamepad. The

version used in this experiment was the Logitech Wingman Rumblepad. The

configuration of the gamepad was the left joystick controlled the forward, reverse, and

rotation movement. The right joystick changed the pitch of the rifle – for aiming. Firing

was accomplished via the ‘A’ button.

The third interface was the instrumented rifle with HMD and trackers. The rifle

was an Airsoft rifle outfitted with the joystick and button controls from a Wireless

Wingman Rumblepad. The firing of the rifle was connected the trigger of the rifle. A

joystick was mounted the end of the rifle handgrip allowing the subject to control

movement via a thumb-controlled joystick, with provision to support both right and left-

handed operators. The joystick was mapped to control the forward, reverse, left and right

movement in the environment. The HMD used was a 5DT Head Mounted Display

Model DH-4400VPD. The resolution on this HMD was 800 by 600, and the apparent

FOV was 32 degrees, diagonally, with a 4:3 aspect ratio. Trackers were used in

conjunction with the joystick to control the movement of the rifle and the subject’s look-

at direction in the environment. The system used for the experiment was an InterSense

IS-300 Pro Inertial Tracking System with two inertial cubes; one cube was placed on the

 115

top of the rifle barrel to control the orientation of the rifle and one cube was placed on the

top of the HMD to control the look-at direction of the avatar. Both inertial cubes were

initialized and bore-sighted prior to each subject conducting the experiment.

3. Environment

The virtual environment used for this experiment was one developed using the

libGF open-source graphics library developed at the Naval Postgraduate School. The

environment model was a five building MOUT site created for this experiment (see

Figure 62). Only the buildings labeled 1, 2, and 3 were used for this experiment.

Figure 62. MOUT Overhead

Targets were placed throughout the three buildings in locations that required good

tactical movement. Specific locations of the targets can been seen in the individual

briefing sheets for each segment. Targets in the environment had the appearance of

simple plywood targets placed on the posts, which fell when shot (see Figure 63).

 116

Figure 63. Target

The display resolution was set to 800x600 for each segment of the experiment

because of the limitations of the HMD and to provide consistency throughout the

experiment.

C. EXPERIMENT

1. In Briefing

Prior to conducting the experiment, each subject was given an in briefing

explaining the purpose of the experiment and what they would be asked to accomplish

during the experiment. Each subject was briefed on the minimal risk associated with

wearing an HMD for an extended period of time, which for this experiment was expected

to be 20 minutes for each subject.

 117

Each subject was asked to complete a preliminary questionnaire used for

background information to determine their experience with computer gaming, experience

with actual training in MOUT, and pervious exposure to virtual environments and head

mounted displays.

2. Completing the Tasks

Subjects were given a series of three segments to accomplish per hardware

interface. The order of the interface use was chosen in random prior to the start of the

experiment. Each interface was associated with a different building, which remained

constant for each subject. The three segments conducted for each interface were

conducted twice, sequentially, to determine if building familiarity played any role in the

subjects ease in maneuvering through the building and conducted each segment.

For each segment, the time to complete the task was noted, along with the

subject’s rating of the segment’s ease compared previous segments while using the same

interface. After the run of each set of segments, using the same interface, the subject’s

were asked to complete a second run of the same set of segments.

3. User Questionnaire

Upon completion of all tasks, the subjects were asked to fill out a questionnaire.

The questionnaires asked the subjects to rate the after effects of wearing the HDM, the

realism of the movement and field of view inside the environment for each of the three

different hardware interfaces. They were also asked to rate the ease of accomplishing

each task, maneuvering through doorways and around obstructions, ease of tactical

movement, and ability to sight in and engage targets.

D. RESULTS

1. Subject Profile

There were eight subjects that were used to perform this experiment. Of those:

 118

• 100% of the subjects were male.

• 100% of the subjects were U.S. Marine Corps officers.

• 100% of the subjects had more than 50 hours of experience in a MOUT

environment, with two subjects having more than 150 hours.

• All but one subject had been previously exposed to virtual environments, but

none had been exposed to a virtual environment using a head-mounted

display.

• 100% of the subjects spent less than two hours per month playing first person

shooter type games.

• Only three of the eight subjects averaged more than 2 to 4 hours of computer

usage per day.

2. Subject Questionnaire Results

The following conclusions were drawn from the post experiment questionnaires

filled out by each subject:

• Movement rate of the HMD and rifle was more realistic than the

keyboard/mouse and gamepad.

• A more immersive feeling was obtained while using the HMD and rifle.

• The movement using the HDM and rifle was more realistic in the VE than

using the other two interfaces.

• Subjects found the tasks pretty comparable to accomplish for both the

keyboard/mouse and the HMD and rifle.

• Maneuvering through doors was found to be the easiest using the HDM and

rifle.

• The difficulty of maneuvering around obstacles was found to be the same for

both the HMD and rifle and the keyboard/mouse.

 119

• Tactical movement was best with the HMD and rifle (but only slightly easier

than keyboard/mouse).

• Sighting and engaging the targets was found to be easier with the HMD and

rifle.

3. Statistical Results

Significant statistical analysis is achieved by Oneway Anova analysis of the data.

Analysis was done on the three separate buildings; Building 1 was representative of the

keyboard/mouse input setup; Building 2 was representative of the gamepad setup;

Building 3 was representative of the HMD and instrumented rifle setup. Data collected

represents the individual’s position at each second of the experiment. Intent was to

collect information on position, time, and discontinuities. Discontinuities can be

described as variance in heading above a given threshold. For statistical analysis, a lower

threshold of 45 degrees and a higher threshold of 90 degrees were used.

The nature of tactical maneuver and, specifically, building clearing tasks is

discontinuous by nature. The need to “pie off” an entrance or opening requires the

participant to constantly change heading while making small positional changes. Many

other such examples of discontinuous movement can be found in the conduct of tactical

maneuver and building clearing tasks. The need for such discontinuous maneuverability

means that the better input device choice will be most likely found in the choice that

allows for more rapid discontinuity over time.

The expectation is that a lower total time would be representative of the more

maneuverable input device setup. Since however, this is a discontinuous task,

discontinuities per second reveals the immediacy of maneuverability across the three

input setups. Further, a higher discontinuity per second rate is only desirable if the total

time is similar across the experiment. The following graphs display the analysis of the

experiment.

 120

To
ta

l T
im

e

150

200

250

300

350

400

450

500

550

1 2 3

Treatment

Figure 64. Oneway Analysis of Total Time By Treatment at 90 degrees

An analysis of variance of total time by treatment results in P = 0.3191 (F(2,23) =

1.2066) suggesting that there is no significant difference between treatments in terms of

total time.

 121

D
is

co
nt

in
ui

tie
s

10

20

30

40

50

60

70

80

90

1 2 3

Treatment

Figure 65. Oneway Analysis of Discontinuities By Treatment at 90 degrees

An analysis of variance of discontinuities by treatment results in P = 0.6038

(F(2,23) = 0.5169) suggesting that there is no significant difference between treatments in

terms of total discontinuities.

 122

D
is

co
n/

S
ec

0.1

0.15

0.2

0.25

1 2 3

Treatment

Figure 66. Oneway Analysis of Discontinuities/Sec By Treatment at 90 degrees

An analysis of discontinuities per second by treatment results in P ≤ 0.1 (F(2,23)

= 2.7645) showing that treatment 3 (HMD and instrumented rifle) had the greatest

discontinuities per second; this is significant because the analysis of time showed no

significant increase of the same treatment.

 123

To
ta

l T
im

e

150

200

250

300

350

400

450

500

550

1 2 3

Treatment

Figure 67. Oneway Analysis of Total Time By Treatment at 45 degrees

Repeating the same statistical tests on the 45 degrees measurement, an analysis of

variance of total time by treatment results in P = 0.3191 (F(2,23) = 1.2066) suggesting

that there is no significant difference between treatments. This data matches that of the

plot for 90 degrees because the total time does not change with variance of the

discontinuity threshold.

 124

D
is

co
nt

in
ui

tie
s

25

50

75

100

125

150

175

1 2 3

Treatment

Figure 68. Oneway Analysis of Discontinuities By Treatment at 45 degrees

An analysis of variance of discontinuities by treatment results in P = 0.4932

(F(2,23) = 0.7312) suggesting that there is no significant difference between treatments.

This analysis shows no significant statistical difference from the 90 degree threshold.

 125

D
is

co
n/

S
ec

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3

Treatment

Figure 69. Oneway Analysis of Discontinuities/Sec By Treatment at 45 degrees

An analysis of discontinuities per second by treatment results in P ≤ 0.1 (F(2,23)

= 4.6492) showing that treatment 3 had the greatest discontinuities per second; this is

significant, as with 90 degrees, because the analysis of time showed no significant

increase of the same treatment. The fact that the two end thresholds produce the same

statistical analysis shows that there is no significance in what threshold is used.

Given that building clearing is a necessarily discontinuous task, statistical analysis

shows that the HMD display and instrumented rifle setup proves to be the more realistic

interface for use in this task. It is important to note that this does not validate the ability

of this application as a trainer for the live equivalent of this task – merely that the HMD

and rifle setup is closer to real world task execution in this application.

 126

THIS PAGE INTENTIONALLY LEFT BLANK

 127

IV. CONCLUSIONS AND RECOMMENDATIONS

A. MILITARY TRAINING COMMANDS HAVE VIABLE VIRTUAL
REALITY ALTERNATIVES

The military is no longer locked into either real training or a two-dimensional

alternative. Too often, when a unit does not have the ability to train in a real

environment, the alternative is insufficient to maintain proficiency. The tools are now

available to overcome these deficiencies due to prolonged absence from real training

environments. Virtual reality tools are capable of providing a realistic environment in

which participants can feel present and can learn skills that they could otherwise learn in

a real environment.

There is no premise to say that virtual training will ever replace real training; that

is not the issue. The issue is that real training is becoming more difficult to conduct due

to schedules, money, and resources. There are many times when units would train if

given the opportunity, but the opportunity does not exist. This is a twofold problem;

training in those conditions leads to atrophy of skills between training evolutions, which

further serves to reduce the effectiveness of training that is accomplished because units

cannot simply move forward and get more out of each training session when

fundamentals need to be relearned. However, if skills could be maintained and basic

procedural skills could even be added to between training evolutions, real training

evolutions would have a much stronger impact on unit capability and readiness.

Virtual reality training environments serve this purpose; they are capable of

preventing atrophy of skills and of covering new skills in advance of real training

scenarios. Virtual tools can be modified to fit a particular need; they can be scaled up to

larger environments, or scaled down for single participants. They can also be scaled to

work on different platforms and with varying equipment based on need and availability.

Virtual reality training environment provide a versatile way for units to maintain

readiness skills. Since there is a diversity of products used to make these virtual

environments, there are alternatives to choose from based on need and cost.

 128

B. VIRTUAL REALITY TRAINING TOOLS DO NOT HAVE TO BE
EXPENSIVE

When virtual reality was a fairly new term to a user market, proprietary software

was the only way to ensure that the user was getting what he expected. Different

companies provided different results, and buyers paid for the level of capability that they

wanted. Commercial vendors could write whatever interface they liked and could

provide whatever functionality they liked so long as it sold. This created a lack of

flexibility for the buyer; once a buyer was locked into a particular brand of software, the

buyer could only work with the functionalities and capabilities provided by the software

vendor, unless the buyer wanted to pay more to have additional functionality written.

This lack of flexibility and the commercial costs that commercial software

vendors could charge because of it led to the creation of a market of simulation engines

trying to make a better product. Eventually, though, because alternatives became

available, competition turned out to be the cause for commoditization, with each software

company trying to provide the same underlying virtual reality capabilities as all others.

With open-source simulations engines being written that—because of

commoditization—provide the same functionality as expensive commercial software, the

only difference is the level of service from the software vendor. So the only real cost that

now matters is the cost associated with a level of service adequate to ensure that software

is up-to-date, stable, and capable. Because many open-source alternatives have members

who consult professionally, the same level of service and customer commitment can be

met by open-source alternatives as by commercial vendors, but the cost can be

significantly lower. The DoD pays for either its own management and maintenance of

the software or for consultant support, both of which can be lower cost solutions to

commercial software.

 129

V. FUTURE WORK

A. REORGANIZATION OF THE ARCHITECTURE

libGF has evolved into an architecture that is fully capable of creating virtual

environments. What has been described in this work is, for the most part, work that the

authors conducted in adding to the libGF architecture (with exception to much of the

basic API that is discussed in the Quick-Start User Manual). However, this is only a

portion of the work that has been contributed to libGF. Because a number of people have

contributed work to the libGF architecture, the organization of the libGF structure lends

itself to the need to redesign the architecture from the bottom up, with emphasis on what

features to make available and where those features fit into a new structure.

Currently, a new simulation engine is being designed and written, with libGF

being used as background for how to engineer a new system. Sections of libGF that were

well architectured and have a structure that lend themselves to a new system are being

ported or rewritten. Sections that were seen as needing additional work or needing

rewritten in libGF are being analyzed for significance as to what was originally done

correctly or incorrectly, and are then being discarded or rewritten in the new system.

New functionality that was discussed but never reached in libGF is being discussed early

in the organizational cycle of the new system, so that sections are not overlooked.

What will hopefully come out of the successor to libGF is a production system

capable of being used to create virtual training environments. This was the goal of libGF,

and is the continuing goal of follow-on work. A new system written to reach a level of

production could be handed to DoD software organizations, such as simulation software

engineering labs, so that those organizations have the ability to create new virtual reality

training environments from which to conduct further study or from which service

personnel can be trained. The ability of those organizations to create virtual reality

training environments at a low-cost equates to the addition of low-cost virtual training

capability at the unit level, where it can be used to maintain procedural skills, enhance

training levels, and multiply the benefits of live training.

 130

B. DETERMINING WHETHER APPLICATIONS BUILT ON LIBGF
PROVIDE POSITIVE TRAINING TRANSFER

The assumption made, when discussing the benefits received through virtual

training, is the positive benefit in unit and individual capability, which can be further

beneficial to follow-on live training. This is not, however, a proven statement. Little

study has, in fact, been conducted and documented on the effects of virtual training and

the impact of that training on unit ability. The Marine Corps has been using the Indoor

Simulated Marksmanship Trainer (ISMT) for years as a practical addition to

marksmanship training; recently, in some units, this system has been so enveloped into

the training program that practice on the ISMT is a requirement of some Marines prior to

live-fire marksmanship training. The assumption is clearly made that the addition of

virtual environment training is beneficial to live-fire training, but there has not been

actual, quantifiable study conducted on how beneficial that virtual training really is.

This is not a terribly surprising revelation; an understanding of the use of software

and computer systems has eluded U.S. military organizations until very recently. While

software and hardware have advanced dramatically in recent years, the military has been

slow to realize that fact or its significance. The military acquisition process is a classic

example; tracking software development as a significant part of acquisition programs has

only become a serious issue very recently. Until that time, software and its integration

were seen as a small and fairly insignificant portion of the acquisition process. Nothing

could be further from the truth, and the same can be said of the use of software products

such as virtual training environments in training.

While the authors believe that what they have accomplished can be beneficial to

individual and unit readiness, this has yet to be proven. Study is now possible, however,

with applications built using the libGF simulation engine. By using geometry modeled

on the buildings and scenery of an actual training environment, future studies can be

conducted on virtual environment training in a replica environment, and whether that

training has impact on individual or unit capability when subsequently training in the live

environment. The findings of such studies could have significant impact on future

military training and the use of virtual training environments.

 131

LIST OF REFERENCES

Ascension Technology Corp. (no date). Ascension Technology (online).
http://www.ascension-tech.com (2002, Sep. 5).

Anderson, Paul. Visualization; Virtual Reality Training for the Future. ENN Daily

Report, Vol 2, No. 306. http://www.emergency.com/vr-train.htm. (1996, Nov. 1).

Aukstakalnis, S., and Blatner, D. (1992), Silicon Mirage: The Art and Science of Virtual

Reality, Berkeley: Peachpit Press.

Bandi, Srikanth. (2000). Path Finding for Human Motion in Virtual Environments.

Computaional Geometry 15, 103-127.

Baumann, Jim, Military applications of virtual reality, Human Interface Technology

Laboratory. http://www.hitl.washington.edu/scivw/EVE/II.G.Military.html. (Fall
1993).

Bell, H. H., Mastaglio, T. W., and Moses, F. (1993), "Using distributed interactive

simulations for joint service training", Military Simulation & Training, 5, 28-30.

Comet, Michael B. (1999). Character Animation: Principles and Practice (online).

http://www.comet-cartoons.com/toons/3ddocs/charanim (2002, Aug. 27).

Crandol, Michael. (1999). The History of Animation: Advantages and Disadvantages of

th eStudio System in the Production of an Art Form, Digital Media FX – The
Power of Imagination (online).
http://www.digitalmediafx.com/Features/animationhistoryp.html>
(2002, Aug. 27).

Creating Grace: Baginski Animates The Cathedral. (Jul. 2002). Animation Magazine, 29.

Deployable Virtual Training Environment. Coalescent Technologies Corporation.

http://www.ctcorp.com/performance15.html. (Modified 10 Jun. 2003).

Dollner, Jurgen, and Hinrichs, Klaus. A Generalized Scene Graph. Institut fur Informatik,

Unversitat Munster.

Eyetronics (no date). Eyetronics: 3D Scanning Solutions (online).

<www.eyetronics.com> (2002, Sep. 5).

Fisher, J. Brian. “Using Virtual Reality to Train Air Traffic Controllers.”

http://www.tss.swri.edu/pub/2001iats_atcvr.htm. (2001).

 132

Gleicher, Michael. (no date). Animation From Observation: Motion Capture and Motion
Editing (online). www.awn.com/mag/issue3.11/3.11pages/kenyonrosehtal.php3>
(2002, Aug. 29).

Henry-Biskup, Stefan. (Nov. 1998). Anatomically Correct Character Modeling (online).

http://www.gamasutra.com/features/visual_arts/19981113/charmod_01.htm
Gamasutra Vol 2, Issue 45.

Hogue, Jeff. Parachute Flight Training Simulation. Systems Technology, Inc.
http://www.systemstech.com/paramain.htm. (2003, Apr. 29).

James, Patrick. (1997). History of Animation: Before Disney (online).

http://www-viz.tamu.edu/courses/viza615/97spring/pjames/history/main.html
(2002, Aug. 27).

Johnson, David M. (1997, Feb.), Learning in a synthetic environment : the effect of

visual display, presence, and simulator sickness, Corporate author: U.S. Army
Research Institute for the Behavioral and Social Sciences. Rotary-Wing Aviation
Research Unit, (Technical report {U.S. Army Research Institute for the
Behavioral and Social Sciences} ; 1057), (Army project number 2O262785A791),
Alexandria, Va. : U.S. Army Research Institute for the Behavioral and Social
Sciences, 1997.

Knerr, Bruce W. …[et al.] (1998, Nov.), Virtual environments for dismounted soldier

training and performance : results, recommendations, and issues, Corporate
author: U.S. Army Research Institute for the Behavioral and Social Sciences,
(Technical report {U.S. Army Research Institute for the Behavioral and Social
Sciences} ; 1089), Alexandria, Va. : U.S. Army Research Institute for the
Behavioral and Social Sciences, 1998.

Lampton, Donald R. …[et al.] (2001, Mar.), Instructional Strategies for Training Teams

in Virtual Environments, Corporate author: U.S. Army Research Institute for the
Behavioral and Social Sciences (Technical report {U.S. Army Research Institute
for the Behavioral and Social Sciences} ; 1110), Alexandria, Va. : U.S. Army
Research Institute for the Behavioral and Social Sciences, [2001].

Landauer, Christopers, Bellman Kirstie L. (Eds) (1998), Virtual Worlds and Simulation

Conference (VWSIM '98), (Full title: Proceedings of the Virtual Worlds and
Simulation Conference (VWSIM '98) ; 1998 Western Multiconference, San
Diego, California, January 11-14, 1998, Catamaran Resort Hotel), Simulation
series ; v. 30, no. 2, San Diego, Calif. : The Society for Computer Simulation
International, 1998.

Landauer, Christopers, Bellman Kirstie L. (Eds) (1999), Virtual Worlds and Simulation

Conference (VWSIM '99), (Full title: Proceedings of the Virtual Worlds and

 133

Simulation Conference (VWSIM '99) ; 1999 Western Multiconference, San
Francisco, California, January 17-20, 1999, Cathedral Hill Hotel), Simulation
series ; v. 31, no. 2, San Diego, Calif. : The Society for Computer Simulation
International, 1999.

Lind, Judith H. (1995, Sept.), Battlefield behavior of neutrals and hostiles : models for

the team tactical engagement simulator (TTES), Corporate Author: Naval
Postgraduate School (U.S.) (NPS-OR-95-006), Monterey, Calif. : Naval
Postgraduate School, [1995].

Norris, Steven D. (1998, Sept.), A task analysis of underway replenishment for virtual

environment ship-handling simulator scenario development, Thesis (M.S. in
Computer Science) Naval Postgraduate School, Monterey, Calif. : Naval
Postgraduate School ; Springfield, Va. : Available from National Technical
Information Service, 1998, http://library.nps.navy.mil/uhtbin/hyperion-
image/98Sep_Norris.pdf (5.74 MB) or http://handle.dtic.mil/100.2/ADA355905.

Piau, Pang Sie. (2001, Oct.). Hollywood Industry: Introduction to Modeling 3D

Characters (online). http://www.hollywoodindustry.com/ (2002, Sep. 5).

Pleban, Robert J. (2001, Mar.), Training and Assessment of Decision-Making Skills in

Virtual Environments, (Army Project Number 2O262785A790), Alexandria, Va. :
U.S. Army Research Institute for the Behavioral and Social Sciences,
http://handle.dtic.mil/100.2/ADA389677.

Ripley, Tim. (2003, Spring). Creating the Virtual Battlefield. http://www.ets-

news.com/virtual.htm. (2003, Sep. 16).

Sanders, Richard D. Jr. and Scorgie, Mark A. (2002, Mar.), The effect of sound delivery

methods on a user's sense of presence in a virtual environment, Thesis (M.S. in
Modeling, Virtual Environments, and Simulation)--Naval Postgraduate School,
Monterey, Calif. : Naval Postgraduate School ; Springfield, Va. : Available from
National Technical Information Service, 2002,
http://library.nps.navy.mil/uhtbin/hyperion-image/02Mar_Sanders.pdf(1.18 MB).

Scott, Joanna. (2002, Jul.). “Spider-Man: The Inside Story.” 3D World, 18-21.

“Shiphandling and Advanced Shiphandling (SH/ASH).” Navy Course Descriptions.

Marine Safety International.
http://www.marinesafety.com/sections/usn/usn_SH.htm.

Shlechter, Theodore M. …[et al.] (1997, Sept.), An examination of training issues

associated with the virtual training program, Corporate author: U.S. Army
Research Institute for the Behavioral and Social Sciences, (Technical report {U.S.
Army Research Institute for the Behavioral and Social Sciences} ; 1072),

 134

Alexandria, Va. : U.S. Army Research Institute for the Behavioral and Social
Sciences, 1997.

Singhal, Sandeep and Zyda, Michael. Networked Virtual Environments - Design and

Implementation. New York: ACM Press Books, SIGGRAPH Series. 23 July
1999. ISBN 0-201-32557-8. 315 pages.

Street, Rita. (2002, Jul.). Not So Far Away: Animating the Future at ILM.

Animation Magazine, 40-44.

Stuman, David J. (1994). A Brief History of Motion Capture for Computer Character

Animation. Character Motion Systems, SIGGRAPH 94: Course 9,
http://www.siggraph.org/education/materials/HyperGraph/animation/character_an
imation/motion_capture/history1.htm (2002, Aug. 27).

Sullivan, CDR Joseph A (USN). Compendium. “Helicopter Virtual Environment and

Navigation Studies at NPS.” http://www.nps.navy.mil/cs/sullivan/HeloNav.html.

“Tactical 3D Simulation Environment—VBS1™.” Coalescent Technologies Corporation.

http://www.ctcorp.com/capability20.html. (Modified 10 Jun. 2003).

“Tank Driver Trainers (M1 and M1A2 TDT).” PM CATT, Project Manager Combined

Arms Tactical Trainer. http://www.stricom.army.mil/PRODUCTS/TDT/.
(Modified 8 Jul. 2003).

Tu, Xiaoyuan. (1999). Artificial Animals for Computer Animation: Biomechanics,
Locomotion, Perception, and Behavior. In G. Goss, J. Hartmanis and
J. van Leeuwen (Eds.), Lecture Notes in Computer Science 1635. New York:
Springer.

U.S. Congress, Office of Technology Assessment, Virtual Reality and Technologies for
Combat Simulation--Background Paper, OTA-BP-ISS-136 (Washington, DC:
U.S. Government Printing Office, Sept. 1994),
http://www.wws.princeton.edu/cgi-
bin/byteserv.prl/~ota/disk1/1994/9444/9444.PDF.

“U.S. Navy SURFLANT Norfolk, VA.” Marine Safety International.

http://www.marinesafety.com/sections/usn/usn_norfolk.html.

Washington, David B. (2001, Sept.), Implementation of a multi-agent simulation for the

NPSNET-V virtual environment research project, Thesis (M.S. in Computer
Science) Naval Postgraduate School, Monterey, Calif. : Naval Postgraduate
School ; Springfield, Va. : Available from National Technical Information
Service, 2001, http://theses.nps.navy.mil/Thesis_01sep_Washington.pdf(835 KB).

 135

APPENDIX A. LIBGF QUICK-START USER MANUAL

A. REQUIRED SETUP FOR DEVELOPMENT

1. Setting up WinCVS to Download the Source Code

The libGF software resides at http://libgf.sourceforge.net, on a CVS distribution.

Prior to downloading a copy of libGF from CVS, the following steps must be performed

to ensure that the user has a working CVS client from which to pull the libGF source

code. Users requiring the software that is specified for installation may obtain a copy, if

available, through the Naval Postgraduate School Help Desk, or they may obtain the

appropriate software from the appropriate Internet URL.

1) Install SSH Secure Shell (e.g., self-executable SSGWinClient-3.1.0-build235.exe)
2) Install Python (e.g., self-executable Python-2.2.1.exe)
3) Install WinCVS (v 1.3 works)
4) Run WinCVS (Programs>GNU>WinCVS)

a) In Admin>Preferences
i) On the General tab,

(1) Change Authentication to ssh
(2) Click on Settings (next to Authentication)

(a) Check the ‘if ssh is not in the PATH’ box
(b) Browse to/Enter the executable for ssh (e.g., ssh2.exe)

(3) Change Path to /cvsroot/libgf/
(4) Change Host Address to cvs.libgf.sourceforge.net
(5) Change Username to yourUsername(developer) or

 anonymous(non-developer)
(6) Ensure CVSROOT is

yourUsername@cvs.libgf.sourceforge.net:/cvsroot/libgf/ or
anonymous@cvs.libgf.sourceforge.net:/cvsroot/libgf/

ii) Check the ‘Show CVS console’ checkbox
b) On the WinCvs tab, provide a directory in HOME to store the CVS settings file

2. Downloading and Installing Software Prior to Compilation

In order to use libGF, the user must first extract a copy of the source, in order to

compile the source into the needed libraries. Prior to compilation, all libGF files must be

extracted and correctly installed (as explained below), and the Microsoft® DirectX®

Software Development Kit must also be installed. Do all of this prior to attempting to

compile the libGF libraries.

 136

1) From WinCVS, Go to Create>Checkout module…

a) Type libgf into ‘Module name and path on the server’
b) The CVS console window will pop up. It should say:

‘Host key not found from database. […] Are you sure you want to
continue connecting (yes/no)?’

i) Type yes and hit enter
ii) You should see the files being downloaded in the bottom pane of the WinCVS

window
iii) When the download is done (you will see *****CVS exited normally with

code 0 ***** in the bottom pane following the downloaded files), close the
dos CVS console window

2) Install dependency libraries and example data
a) Go to the URL: http://sourceforge.net/projects/libgf .
b) Download the current version of libgf-dependencies. Unzip this download into

the libgf directory (c:\libgf), ensuring that full path information is used.
c) Download the current version of libgf-example-data. Unzip this download into

the libgf\example directory (c:\libgf\examples), ensuring that full path
information is used.

3) Install the Microsoft® DirectX® 8.1 (or higher) Software Development Kit (SDK).

3. Setting up Visual C++® 6.0 for libGF Development

In addition to extracting and installing all needed files and dependencies, Visual

C++® 6.0 should be correctly installed and set up for compilation, since the libGF file

structure includes the Visual C++® 6.0 workspace and project files. Because Microsoft®

DirectX® is required for compilation, the user must compile in a Microsoft®

environment, so Visual C++® 6.0 seemed the correct choice. Setting up Visual C++®

6.0 correctly, as explained below, ensures that all needed libraries are referenced.

1) Install Visual C++® 6.0 (Standard install)
2) Open Visual C++® 6.0

a) In Tools>Options>Directories tab
i) In ‘Show directories for:’ click on Include files

(1) Add the Include directory for the Microsoft® DirectX® SDK (e.g.,
c:\DXSDK\include)

(2) Add the Include directory for gfLib (c:\libgf\inc)
(3) Add the Include directory for gfLib external dependencies

(c:\libgf\ext\inc)
ii) In ‘Show directories for:’ click on Library files

(1) Add the Library directory for the Microsoft® DirectX® SDK (e.g.,
C:\DXSDK\LIB)

(2) Add the Library directory for gfLib (c:\libgf\lib)

 137

(3) Add the Library directory for gfLib external dependencies (c:\libgf\ext\lib)

 ***VERY IMPORTANT–the DirectX® Include directory and the DirectX®

Library directory need to be the first folders in their respective Options tab

4. Setting up the Environment Variables

The libGF libraries dynamically link required .dll libraries at runtime as needed;

in order to ensure this happens, the location of all dynamic link libraries needed at

runtime must be in the path.

1) In Start>Control Panel>System>Advanced tab>Environment Variables:
Add to the path: C:\libgf\ext\bin

5. Building the libGF .lib Files

Finally, once all of the above steps (1 through 4) are accomplished, the libGF

libraries can be built as one batch process. Upon completion, the libGF libraries will be

available in the libgf\lib directory and will be available for use.

1) Open the gf.dsw workspace in c:\libgf\src
2) Go to Build>Batch Build…
3) Ensure all check boxes are selected
4) Click Build

6. Building the Example Programs

In order to see example applications for libGF and all of its APIs, an examples

workspace is available which provides the ability to batch build all of the sample

applications. Upon completion, the libGF example applications will be available through

either the examples workspace or their individual workspaces in the

libgf\src\examples\exampleName directory.

5) Open the examples.dsw workspace in c:\libgf\src\examples
6) Go to Build>Batch Build…
7) Ensure all check boxes are selected
8) Click Build

 138

B. A BASIC LIBGF APPLICATION

A basic libGF application, at a minimum, consists of a gfSystem as shown in

Figure 64. The system is instantiated and initialized before all other classes. All other

class members created in the main function are then instantiated and initialized. The

gfSystem is then configured and run. gfSystem uses callback methods, so no member

instantiation code should follow sys->Config(). The basic application displayed in

Figure 70 does not, by itself, do anything noticeable.
int main(int argc, char **argv)
{
 gfSystem *sys = new gfSystem("mySystem");
 sys->Init(argc, argv);

 //add all additional code here

 sys->Config();

 sys->Run();

 sys->Exit(0);

 return 0;
}

Figure 70. A basic libGF application consists of a gfSystem

C. ADDING MEDIAPATHS

In order to prevent the user having to type path names in for all files needed, and

to allow the user the flexibility of changing the path used once as opposed to changing

file names many times within a program, libGF allows users to set a list of gfMediaPaths

from which to look for all files. The program first looks in the current directory, as

expected, but if it does not find the file in the current directory, the program then looks

through the list of media paths, in the order provided, until it finds the first copy of the

file asked for. gfMediaPath implementation is depicted in Figure 71.
 gfMediaPath("C:\\libgf\\src\\examples\\data\\Models\\");
 gfMediaPath("C:\\libgf\\src\\examples\\data\\Textures\\");

Figure 71. Implementation of gfMediaPath

 139

If, after setting the gfMediaPaths, the programmer uses a filename that is within

one of the specified path entries, the method to manually extract the full filename (path

plus filename) is depicted in Figure 72.
 char pathPlusFileName[256];
 gfGetFullFileName("someFile.xml", pathPlusFileName);

Figure 72. Manual use of gfMediaPath

D. ADDING A WINDOW

In order to view the 3D world, the programmer has to create a gfWindow. The

analogy to the gfWindow is that of having a box over one’s head and needing a hole in

the box to be able to see. Keep in mind at this point, however, that the hole in the box, by

itself does not present a picture. The hole is not oriented, and even if it were, nothing is

there to look at. Implementation of a gfWindow is shown in Figure 73.
 //Make a window
 gfWindow *mainWindow = new gfWindow(sys,"mainWindow");//, true);
 //note—the use of the optional Boolean on the end is for full screen mode,
 // which works if the window size is a standard size
 // (640x480{default}, 800x600, 1024x768, 1152x864, 1280x1024, 1600x1200)

 //The following is not required, as it is defaulted (to 640x480)
 mainWindow1->WinSize(0, 800, 0, 600); //values are: left, right, top, bottom

Figure 73. Creating a gfWindow

E. ADDING AN OBSERVER

In order to see anything through the hole in the box, the application must create a

gfObserver. This observer is analogous to the person looking at the world; Figure 74

depicts the creation of the gfObserver. Although there is now a viewer, there is still no

field of view, no direction to look at, and nothing in the world. The observer will tie

several other class members together as they are created.
 //Make an observer
 gfObserver *obs = new gfObserver("MainObserver");

Figure 74. Creating a gfObserver

F. ADDING A CHANNEL

A gfChannel is the field of view given to the observer; the gfChannel provides the

viewing frustum. Consider that the hole in the box from the gfWindow analogy does not

 140

provide a picture by itself—it has to be pointed in a particular direction; additionally, the

distance from the viewpoint (the eyes) to the hole in the box also makes the view

different, as well as the size of the hole. Figure 75 describes gfChannel instantiation and

settings.
 //make a channel for the window
 gfChannel *mainChannel = new gfChannel("mainChannel");

 //set the window in which the channel will be displayed
 mainChannel->SetWindow("mainWindow");

 //… and give the observer a field of view
 obs->Channel(“mainChannel”);

//The following are not needed settings, as they are all defaulted

 mainChannel->SetFOV(hFOV, vFOV); //set horizontal and vertical field of view in
 // degrees; default is 45 degrees horizontal and vertical = -1
 // (sets vertical based on horiz FOV and screen dimensions)

 mainChannel->NearFar(nearDistance, farDistance) //sets the near and far clipping
 // planes

 mainChannel->ClearColor(0.5f, 0.5f, 0.9f, 0.f); //the viewing background color when
 // nothing is present

Figure 75. Creating a gfChannel and setting several of its parameters

G. ADDING A SCENE

A window and an observer, with its channel, provide a portal through which the

user can view what is “outside the box”, but the user will not see anything if nothing is

there. The world that the user is looking at through the gfWindow and via the gfObserver

and gfChannel is the gfScene. A gfScene must be added to the application, as in Figure

76. Note that the scene represents the world that the user is looking at, but this world is

still empty until objects are added.
 //Make a scene
 gfScene *scene = new gfScene("Scene");

 //… and give the observer the scene to look at
 obs->Scene(“Scene”);

Figure 76. Creating a gfScene

 141

H. ADDING AN ENVIRONMENT

While the scene provides the world to put objects in, if the user wants the objects

to experience environmental conditions, (such as time-of-day lighting, shadows, or fog) a

gfEnvironment must be added to the scene, as shown in Figure 77. Objects in the scene

can then be added to the environment, vice adding them to the scene, in order to render

those objects using the gfEnvironment’s effects. The environment is not only given to

the scene, it is also given to the observer so that the observer’s view will reflect

environmental settings on visible objects.
 //Make an environment
 gfEnvironment *env = new gfEnvironment("Environment");

 //add the environment to the scene
 scene->AddEnvironment(env);

 //set the environment to the observer so the observer can view objects in the
 // scene using correct environmental conditions
 obs->SetEnvironment(env);

//**** making a (sun)light and adding it to the environment

 //Make a light
 gfLight *light1 = new gfLight("light1");
 gfPosition *lightPos = new gfPosition(50.f, 1000.f, 20.f, 0.f, 0.f, 0.f);
 light1->Position(lightPos);
 env->AddLight("light1");

Figure 77. Creating a gfEnvironment, adding it to the scene, setting it to the
observer

I. ADDING A DATABASE MANAGER

Prior to creating gfObjects to put into the visible 3D world, if those objects are

going to be made of geometry that will be loaded through gfDatasets, a gfDBManager

must be created. The gfDBManager initializes database management tools and also

allows for extensibility by loading available plugins for different file formats. The

gfDBManager does not only handle managing 3D file formats; it also handles retrieval of

information from texture files.
 //Make a database manager to load files
 gfDBManager *dbm = new gfDBManager();

Figure 78. Creating a gfDBManager to open and manage file information

 142

J. ADDING AN OBJECT

Adding objects to the visible 3D world that the user can see is a culmination of

the window and channel, the scene and environment, and possibly the database manager.

The first step in making an object visible is to instantiate a gfObject. By itself, however,

a gfObject has no geometry; for a basic gfObject, the geometry must come from a model

file created in a 3D modeling application. File formats supported include .3ds, .flt, and

.wrl. In order to use the geometry from the 3D file, several steps must occur. First, the

user must create a gfDataset into which to load the model data; second, the user must

load the file into the gfDataset; and, finally, the dataset must be added to the object. The

gfObject then has geometry, but is still not visible until added to the scene, either by

adding it directly to the gfScene, or by adding it to the gfEnvironment, which is added to

the scene. All of these steps are depicted in Figure 79.
 //Instantiate an object
 gfObject *visibleObject = new gfObject("visibleObject");

 //Make a dataset for the visible object’s geometry
 gfDataset *objectDS = new gfDataset("objectDS");

 //Load the object’s geometry from a 3D file into the dataset
 objectDS ->LoadFile("visibleObject.flt");

 //Add the dataset to the object
 groundObject->AddDataset("groundDS");

 //*** Here, there are one of two options; either…

 //add the object to the environment
 env->AddObject("groundObject");
 //*** or…

 //add the object directly to the scene
 scene-> AddObject("groundObject");
Figure 79. Creating a gfObject, loading its geometry, an adding it to the scene

or environment

K. ADDING A MOTION MODEL

To enable the player to move around the environment, it must have a motion

model to provide adjustments to its position in the virtual environment. This thesis deals

mainly with using character animation, so it is assumed that the motion model to use in

 143

the application is gfMotionHuman. In order to add a new motion model, follow the steps

listed in Figure 80.
gfMotionHuman *motionPtr = new gfMotionHuman(motionNameStr, bFlipJoystick);
motionPtr->SetInput(motionInputStr);

gzRefPointer<gfPosition> pos = new gfPosition(positionX, positionY, positionZ,
 positionH, positionP, positionR);

motionPtr->Position(pos);

motionPtr->SetWalkingSpeed(walkingSpeed);
motionPtr->SetRunningSpeed(runningSpeed);
motionPtr->SetWalkRunThreshold(walkRunThreshold);
motionPtr->SetRotationInterval(rotationInterval);
motionPtr->SetGlanceInterval(glanceInterval);
motionPtr->SetSideStepInterval(sidestepInterval);
motionPtr->SetForwardVelocity(walkingSpeed);
motionPtr->SetRotationVelocity(rotationVelocity);
motionPtr->SetStepUpHeight(stepUpHeight);

Figure 80. Creating a new gfMotionHuman motion model

L. ADDING A PLAYER

Adding controlled movement to objects in the 3D world and, in particular, to the

observer looking at the scene (via a gfObserver) is accomplished through the use of

gfPlayers. Again consider that the observer looking through the hole in the box. The

observer has a window (the gfWindow), he has a viewing frustum (the gfChannel), and

he has a view of the world outside the box, which he can see (the gfScene and

gfEnvironment, and all gfObjects). What he does not have is the ability to orient his

view. The gfPlayer, with the help of the gfMotion model, allows the observer to tether

himself to a player in order to be moved around the scene via input. The gfPlayer class is

not only useful for giving the observer a means to move around the scene, it also gives

any other dynamically moving objects a means to move around as well. The gfPlayer ties

movement to the visible objects in the scene by adding visible objects, such as gfObjects,

to itself. Figure 81 depicts creating the gfPlayer, adding the motion model that the player

will use, adding visible scene objects (gfObjects) to the player, and tethering the observer

to the player.
 //Make a player
 gfPlayer *player = new gfPlayer("Player");

 //set the motion model which will control the player’s movement

 144

 player->SetMotion(motion);

 //add all visible objects; the object position will be the same as the gfPlayer position…
 player->AddVisObj(visibleObject);

 //…so if the object needs to be offset, do a SetOffset() on the object
 gfPosition * visObjOffset = new gfPosition(0.0f, 1.0f, 0.0f, 90.0f, 0.0f, 0.0f);
 visibleObject->SetOffset(visObjOffset);

 //If this is the player that the observer will be tied to in order to move around, create
 // an offset position and tether the observer to the player
 gfPosition *obsPos = new gfPosition(0.f, 1.2f, 1.2f, 0.f, 0.f, 0.f);
 obs->TetherOffset(obsPos);
 obs ->TetherMethod(gfObserver::GFOBS_TETHER_FIX_PCS);
 obs ->TetherPlayer(player);

Figure 81. Creating a gfPlayer, adding a motion model, adding a visible
object, and tethering the observer

M. ADDING A GFGRAPHICS

There are several functions that are nice for the programmer to have at hand in

order to change the graphic representation and screen information. Displaying in

wireframe can show the programmer what is being drawn behind objects, and can render

much faster. The ability to turn texturing off and without major code revision is also very

useful for optimization during development. These states can be switched on and off

through the use of a gfGraphics. In addition to these optimizations, a gfGraphics member

will also automatically ensure that backface culling is in effect, so that the scene is

rendered efficiently. Other possible future additions to gfGraphics include: the ability to

turn on/off an informational HUD that shows pertinent development information, such as

frames per second; the ability to zoom in and out (through use of glFrustum commands or

access to the frustum); and stencil buffer effects such as binoculars or view-through-a-

window (i.e., the dash and roof of a car) outlining frames. Figure 82 shows how to

implement the gfGraphics class.
 //Make a gfGraphics (allows wireframe and other functionality)
 gfGraphics *graphics = new gfGraphics("graphics");

 //to set the scene to wireframe (use false to turn back off)
 graphics->SetWireframeMode(true);

 //to turn off all textures applied in the scene (use true to turn back on)
 graphics->SetTextureMode(false);

Figure 82. Creating a gfGraphics

 145

N. ADDING A GFGUI

Once the user has everything he wants built into the application and roughly

where he wants, he may find, when he runs the application, that visible objects are in

slightly incorrect locations, or that he wants to adjust the effects of the environment, or

that he wants to move the observer’s offset from the player. In all of these cases, and

many other situations, the user can use the gfGUI class to make run-time changes, in

order to find the best settings to use in an application. Use of the gfGUI is depicted in

Figure 83.
 gfGUI* gui = new gfGUI();

Figure 83. Creating a gfGUI

O. DISPLAYING CONSOLE NOTIFICATIONS

libGF has a notification system which sends notifications such as warnings,

notices, and debug information to the console; this allows the libGF engine, as well as the

programmer, to pass important information to the user. However, information needed

due to fatal error can be significantly different than general system notifications, and the

programmer may not always want the end user to see all information, while he may,

himself, want to see all messagees. libGF allows the programmer to set the level of

console notifications that he wants to receive, so that in one instance he receives all

messages, such as warnings, while in another instance, he receives no notifications (other

than fatal messages). This allows the programmer to see all warning or notification

messages while debugging and testing a program, but also allows him to turn all of those

messages off for a final product. The command to set the notification level desired and

the method to add additional notifications are displayed in Figure 84; the notification

levels allowed and their corresponding enumeration value are depicted in Figure 85.
gfSetNotifyLevel(GF_DEBUG);

gfNotify(GF_WARN, "Warning message number %d, same format as printf", 1);

Figure 84. Setting the console notification level and sending messages to the
notification system

enum gfNotifySeverity {
 GF_ALWAYS=0,
 GF_FATAL=1,
 GF_WARN=2,

 146

 GF_NOTICE=3,
 GF_INFO=4,
 GF_DEBUG=5
};

Figure 85. The gfNotification levels

P. SUBSCRIBING TO THE GFSYSTEM

In many instances, members of libGF classes with no ties to other members need

to pass necessary information. An important example of this necessity is that the

gfSystem needs to tell all libGF members when a cycle has completed, so that they can

perform necessary end-of-cycle steps. When creating new classes, either as an

application programmer or when developing new libGF functionality, the programmer

needs to be aware of how to subscribe classes to the gfSystem, and how to make similar

subscriptions between class members.

In order to facilitate message passing between libGF class members, gfBase—the

base class and runtime type identifier for almost all libGF classes—allows members to

subscribe to other members, so that the subscriber can listen to all notifications by the

sender. In order to listen to the gfSystem, libGF members must subscribe to the

gfSystem as follows:

• In the header (.h) file:

The class which will listen to the gfSystem must inherit from gfBase or from a

class that inherits from gfBase. In addition, the class must redefine the virtual onNotify

method (from gfBase). Figure 86 depicts both of these requirements.
class yourClassName : public gfBase {

virtual void onNotify(gzNotifyMessage *message);

};

Figure 86. Inheriting from gfBase and redefining onNotify() in the .h file

• In the source (.cpp) file:

In the constructor, the class must add the system as a notifier to the class, as such:
 //make the system a notifier to this class
 gfSystem *sys = (gfSystem*)SystemList->Get(0);

 147

 AddNotifier(sys);
Figure 87. Adding the system as a notifier to a class

In onNotify, the following code, in Figure 88, allows the listener (the subscribing

class) to listen for particular system messages:
void gfWindow::onNotify(gzNotifyMessage *message)
//a notification has been captured from one of this member’s notifiers; this
// (redefinition of the virtual void) function will handle the notification
{
 gzTypeInterface *sender = message->getSender(); //gets the message sender
 gzString command = message->getCommand(); //gets the command sent

 if (sender->isExactType(gfSystem::getClassType())) //if the sender is the
 //system; this member might subscribe
 // to more than one notifier
 {
 if (command == "xxxxxxx") //if the command is what this
 //class is looking for
 {
 your code here; //Then perform this code
 }
 }
}
Figure 88. Class specific definition of onNotify() in the .cpp file

The commands available from gfSystem include: frame, tick, configure, and exit.

If listening for notification by other classes, the subscribing member must know what

commands it may receive in order to process them. Getting the data from the message

(passed into onNotify()) in order to use it, when needed, is done as such:
ClassToCastDataTo *data = (ClassToCastDataTo *)message->getData();

Figure 89. Casting notification data passed into onNotify()

Further example of the subscription of class members to notifying class members

can be seen in the Networks section of Chapter II.

 148

THIS PAGE INTENTIONALLY LEFT BLANK

 149

APPENDIX B: EXPERIMENT QUESTIONNAIRE

Please read first: The following experiment and questionnaire are conducted
completely anonymously. Nothing you do or answer will be related back to you in any
manner. Thank you for your assistance. Please begin below the solid line and hand to the
proctor when you reach “Stop Here”. You may ask questions at any time.

Subject Number ________ (proctor use only)

Preliminary questions:

1. Do you have any history of epilepsy? Yes / No

2. Are you prone to simulator sickness? Yes / No

3. Do you require corrective lenses? Yes / No

4. What is your vision uncorrected?

5. Do you have any other history of eye disease or injury?

6. How often do you use a computer on a daily basis? (Check one.)

 0-2 hours 2-4 hours 4-6 hours 6-8 hours greater than 8 hours

7. Have you ever used virtual environment for training or entertainment? Yes / No

8. If yes, did you use a head-mounted display (HMD)? Yes / No

9. What First Person Shooter (FPS) games are you familiar with?
__
__
__
__

10. How many hours, on average, do you play FPS games? (Check one)

 0-2 hours 2-4 hours 4-6 hours 6-8 hours greater than 8 hours

 Day Week Month (Check one)

11. How would you rate your level of training in Mobile Operations on Urban Terrain
(MOUT)? (Check one.)
 novice average advanced instructor expert

 150

12. List all exercises and locations that you have conducted or been involved with
MOUT or CQB.
__
__
__
__

13. About how many hours of MOUT training have you received?

14. Evaluation task:
 You will be provided with several building clearing tasks, each with several
segments. Before each segment, you will be briefed on what you are expected to do and
which path you need to take. The amount of time required from start of each segment
until the end of that segment will be recorded and used to help determine the ease of use
for each interface device for MOUT virtual environment training. You will be asked to
perform each set of tasks twice per interface device, and you will perform the experiment
using three different interface devices (Keyboard/Mouse, Gamepad, Head Mounted
Display with Instrumented Rifle), chosen in a random order.

The Goal:
The goal of this experiment is not to measure your overall building clearing skills, but
instead to try and determine which interface allows you to maneuver in the virtual
environment quicker, more reliably, and more realistically. WE ARE EVALUATING
THE SYSTEM, NOT YOUR PERFORMANCE.

Your Resources:
-Overhead map of town, with annotated paths

The Tasks:

You will conduct a series of six tasks. Each task will consist of three segments. You will
be briefed on the path to use from the start of each segment through engagement of
enemy targets. Time keeping will start on the commencement of each segment and will
terminate when the final enemy target is successfully shot (for that segment). Questions
will be asked at the end of each segment, followed by the proctor ensuring that you are in
place for the next segment.

The tasks include:

Clear a building using keyboard and mouse
Clear a building using a gamepad setup

 151

Clear a building using a Head-Mounted Display (HMD) and Instrumented Rifle (joystick
enabled) setup

The tasks will be conducted in a random order, but each of the tasks (keyboard and
mouse, gamepad, and HMD/rifle) will be conducted two times sequentially.

In all of the three tasks, while the path will be predetermined and the proctor will be
directing you (prior to each segment) on where to go, you will be expected to conduct
good building/room clearing techniques. Ensure you are aware of your field of fire and
that you move tactically, taking into account all danger areas such as doors, windows,
open areas, linear danger areas, and constricted areas/choke points.

Do you have any questions?

Stop here.
Notify
the

proctor.

 152

(proctor use only)

Check for history of epilepsy or proneness to simulator sickness.

Perform familiarization walk-through of town. Proctor will perform walk-through, but
subject is allowed to have the walk-through stopped to allow longer view in any area.

Segments are to be performed in a random order and each conducted twice.
Order selected for input devices:
 ______ Keyboard & Mouse
 ______ Gamepad
 ______ HMD and Instrumented Rifle

Keyboard and Mouse Task:

First run:
 First Segment:
 Show the participant Building 1, Segment 1

 Time to complete segment: __________

 Second Segment:
 Show the participant Building 1, Segment 2

 Time to complete segment: __________

Would you rate this segment easier or harder
 than the last segment? Easier/Harder than 1

 Third Segment:
 Show the participant Building 1, Segment 3

 Time to complete segment: __________

Would you rate this segment easier or harder
 than each of the other segments? Easier/Harder than 1
 Easier/Harder than 2
Second run:
 First Segment:
 Show the participant Building 1, Segment 1

 Time to complete segment: __________

 Second Segment:

 153

 Show the participant Building 1, Segment 2

 Time to complete segment: __________

Would you rate this segment easier or harder
 than the last segment? Easier/Harder than 1

 Third Segment:
 Show the participant Building 1, Segment 3

 Time to complete segment: __________

Would you rate this segment easier or harder
 than each of the other segments? Easier/Harder than 1
 Easier/Harder than 2

Gamepad Task:

First run:
 First Segment:
 Show the participant Building 2, Segment 1

 Time to complete segment: __________

 Second Segment:
 Show the participant Building 2, Segment 2

 Time to complete segment: __________

Would you rate this segment easier or harder
 than the last segment? Easier/Harder than 1

 Third Segment:
 Show the participant Building 2, Segment 3

 Time to complete segment: __________

Would you rate this segment easier or harder
 than each of the other segments? Easier/Harder than 1
 Easier/Harder than 2
Second run:
 First Segment:
 Show the participant Building 2, Segment 1

 Time to complete segment: __________

 154

 Second Segment:
 Show the participant Building 2, Segment 2

 Time to complete segment: __________

Would you rate this segment easier or harder
 than the last segment? Easier/Harder than 1

 Third Segment:
 Show the participant Building 2, Segment 3

 Time to complete segment: __________

Would you rate this segment easier or harder
 than each of the other segments? Easier/Harder than 1
 Easier/Harder than 2

HMD and Instrumented Rifle Task:

First run:
 First Segment:
 Show the participant Building 3, Segment 1

 Time to complete segment: __________

 Second Segment:
 Show the participant Building 3, Segment 2

 Time to complete segment: __________

Would you rate this segment easier or harder
 than the last segment? Easier/Harder than 1

 Third Segment:
 Show the participant Building 3, Segment 3

 Time to complete segment: __________

Would you rate this segment easier or harder
 than each of the other segments? Easier/Harder than 1
 Easier/Harder than 2
Second run:
 First Segment:
 Show the participant Building 3, Segment 1

 155

 Time to complete segment: __________

 Second Segment:
 Show the participant Building 3, Segment 2

 Time to complete segment: __________

Would you rate this segment easier or harder
 than the last segment? Easier/Harder than 1

 Third Segment:
 Show the participant Building 3, Segment 3

 Time to complete segment: __________

Would you rate this segment easier or harder
 than each of the other segments? Easier/Harder than 1
 Easier/Harder than 2

 156

(proctor use only)

CQBSIM Set up:
Ensure CQBSim and all supporting files and folders (from the same directory) are copied
into one directory on the hard drive.
Keyboard and Mouse setup:
Run CQBSim.exe.
From the CQBSim GUI, on the Window tab, ensure the ‘Top Window Position’ and
“Left Window Position’ are set to 0, and that the ‘Horizontal Resolution’ and ‘Vertical
Resolution’ are set to 1280 and 1024, respectively.
Ensure that the ‘Full Screen’ box is checked.
Switch to the System tab and ensure that the DirectX GUI is checked.
Press ‘Run App’.
From the DirectX GUI, ensure the keyboard and mouse are correctly mapped.
Press ‘OK’.
Joystick setup:
Run CQBSim.exe.
From the CQBSim GUI, on the Window tab, ensure the ‘Top Window Position’ and
“Left Window Position’ are set to 0, and that the ‘Horizontal Resolution’ and ‘Vertical
Resolution’ are set to 1280 and 1024, respectively.
Ensure that the ‘Full Screen’ box is checked.
Switch to the System tab and ensure that the DirectX GUI is checked.
Switch to the Motion tab, and ensure that ‘Flip Joystick Input’ is deselected.
On the Motion tab, reduce the ‘Rotational Velocity’ to 0.5.
Press ‘Run App’.
From the DirectX GUI, ensure the joystick is correctly mapped.
Press ‘OK’.
HMD and Instrumented Rifle setup with 1 Intersense Tracker:
Intersense tracker setup:
Ensure that the serial Intersense tracker is plugged into the serial port of the computer.
Run isdemo32.exe from the Isense31 directory in the supporting files for CQBSim.
Click ‘Close’
Click ‘Detect’
Ensure that the tracker is located (no failure), and click ‘Accept’
Boresight the tracker from isdemo32.exe, then exit.
Rifle setup:
Ensure the wireless receiver is plugged into a USB port and is active.
Ensure that the LAN cable connects the power supply box to the handgrip of the rifle.
Ensure that fresh batteries have been installed in the power supply box.
Ensure the power supply box is on and active.
Ensure the rifle safety switch is set to ‘Semi’.
HMD setup:
Ensure that the HMD power supply is plugged in and is connected to the HMD control
box.
Ensure that the HMD data cable is plugged into the HMD control box.

 157

Ensure that a video cable connects the computer and the left eye (common) input to the
HMD control box.
Ensure that the computer monitor is connected to either the computer (via DVI cable) or
to the Output connection on the HMD control box via video cable.
Ensure that the power button on the HMD control box is turned on (lights up).
Ensure that the computer video resolution is set to 800 x 600.
Ensure that the Intersense tracker is attached to the HMD via the velcro fastener.
Connect all loose cables to prevent injury or equipment damage.
Run CQBSim.exe.
From the CQBSim GUI, on the Window tab, ensure the ‘Top Window Position’ and
“Left Window Position’ are set to 0, and that the ‘Horizontal Resolution’ and ‘Vertical
Resolution’ are set to 800 and 600, respectively.
Ensure that the ‘Full Screen’ box is checked.
Switch to the System tab and ensure that the DirectX GUI is checked.
Switch to the Motion tab, and reduce the ‘Rotational Velocity’ to 0.5.
Press ‘Run App’.
From the DirectX GUI, ensure the keyboard and mouse are correctly mapped.
Press ‘OK’.
HMD and Instrumented Rifle setup with 2 Intersense Trackers (for future addition to
experiment):
Intersense tracker setup:
Ensure that the serial Intersense tracker is plugged into the serial port of the computer.
Run isdemo32.exe from the Isense31 directory in the supporting files for CQBSim.
Click ‘Close’
Click ‘Detect’
Ensure that the tracker is located (no failure), and click ‘Accept’
Go to ‘Parameters>Station and Sensor Parameters’, and ensure that Station 1 is connected
to InertialCube 1, and Station 2 is connected to InertialCube 2
Boresight the trackers, then exit.
Rifle setup:
Ensure the wireless receiver is plugged into a USB port and is active.
Ensure that the LAN cable connects the power supply box to the handgrip of the rifle.
Ensure that fresh batteries have been installed in the power supply box.
Ensure the power supply box is on and active.
Ensure the rifle safety switch is set to ‘Semi’.
HMD setup:
Ensure that the HMD power supply is plugged in and is connected to the HMD control
box.
Ensure that the HMD data cable is plugged into the HMD control box.
Ensure that a video cable connects the computer and the left eye (common) input to the
HMD control box.
Ensure that the computer monitor is connected to either the computer (via DVI cable) or
to the Output connection on the HMD control box via video cable.
Ensure that the power button on the HMD control box is turned on (lights up).
Ensure that the computer video resolution is set to 800 x 600.

 158

Ensure that the Intersense tracker is attached to the HMD via the velcro fastener.
Connect all loose cables to prevent injury or equipment damage.
Run CQBSim.exe.
From the CQBSim GUI, on the Window tab, ensure the ‘Top Window Position’ and
“Left Window Position’ are set to 0, and that the ‘Horizontal Resolution’ and ‘Vertical
Resolution’ are set to 800 and 600, respectively.
Ensure that the ‘Full Screen’ box is checked.
Switch to the System tab and ensure that the DirectX GUI is checked.
Switch to the Motion tab, and reduce the ‘Rotational Velocity’ to 0.5.
Press ‘Run App’.
From the DirectX GUI, ensure the keyboard and mouse are correctly mapped.
Press ‘OK’.

 159

Post-Experiment Questions:

HMD Aftereffects

1. The HMD made me feel queasy / nauseous.

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

2. The HMD is disorienting because of the need to stand in one position (no body
rotation).

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

Realism

1. The scale of objects in the virtual environment felt correct with respect to a real-
world environment. (same in all tasks)

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

2. The movement rate felt correct with relation to real world movement of personnel
through a MOUT scenario.

 Keyboard and Mouse setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

Gamepad setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

 HMD and Rifle setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

3. My Field of View felt correct with relation to the real world.

 Keyboard and Mouse setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

 160

Gamepad setup
Strongly agree Agree Neither agree nor disagree Disagree Strongly

disagree

 HMD and Rifle setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

4. Use the following definition of presence to answer this question: “Presence is the
feeling that you are truly in the virtual environment, acting and reacting with the
environment as though it were real.”

 I felt as though I was present in the virtual environment.

 Keyboard and Mouse setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

Gamepad setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

 HMD and Rifle setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

Experiment Tasks

1. Movement in the task felt as it would in a real environment.

 Keyboard and Mouse setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

Gamepad setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

 HMD and Rifle setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

 161

2. Accomplishing the segments given by the proctor was easy.

 Keyboard and Mouse setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

Gamepad setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

 HMD and Rifle setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

3. Maneuver through doors was easy.

 Keyboard and Mouse setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

Gamepad setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

 HMD and Rifle setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

4. Maneuver around obstructions was easy.

 Keyboard and Mouse setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

Gamepad setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

 HMD and Rifle setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

 162

5. Tactical movement (ensuring that the subject was able to avoid danger areas and
was able to clear areas around corners and through doors in small zones) through the
environment was easy.

 Keyboard and Mouse setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

Gamepad setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

 HMD and Rifle setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

6. Sighting in on and engaging the target was easy.

 Keyboard and Mouse setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

Gamepad setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

 HMD and Rifle setup

Strongly agree Agree Neither agree nor disagree Disagree Strongly
disagree

7. What suggestions for improvements of the maneuverability of the three different
setups do you have? Please add any other statements you may have concerning this
experiment. (If you have a comment on a specific question please provide the question
number.):
__
__
__
__
__
__
__
__
__
__

 163

__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__

Thank you for your participation.

 164

THIS PAGE INTENTIONALLY LEFT BLANK

 165

APPENDIX C: EXPERIMENT SCRIPTS

A. BUILDING 1 SEGMENT 1

Description:
Enter the structure and pie off the area immediately in front of the entrance.

Engage the target to your right. Proceed toward the wall on your left, and quickly inspect
the area. Cross over to and enter the room on the wall opposite to you. Pie off the
entrance to the room and engage the target within the room. Move tactically through the
environment as you would in a real environment.

Key:
 = Start = Engage target here = Pie off area

= Target = Move this direction

T~1

 166

B. BUILDING 1 SEGMENT 2

Description:
Proceed forward to the corner of the wall. Upon reaching the corner make a right

turn and pie off the area. The wall to your right, represented as a series of circles in the
map above indicates a barrier of wooden 2x4 beams. Engage the target by firing between
the beams. Proceed to the next corner and make a right turn after you pie off the area.
Following the contours of the wall to your right, move to the next doorway. Pie off the
room and engage the target in the room. Move tactically through the environment as you
would in a real environment.

Key:
 = Start = Engage target here = Pie off area

= Target = Move this direction

 167

C. BUILDING 1 SEGMENT 3

Description:
Proceed forward towards the entrance to your right. Pie off the area near the

entrance and engage the target against the far wall. Continue to pie off the area until you
successfully engage the second target in the room. Enter the room and proceed along the
wall to your right. Pie off the hallway around the corner. Cross the room toward the wall
and proceed to the exit on your left. Pie off the area outside of the exit and engage the
target. Move tactically through the environment as you would in a real environment.

Key:
 = Start = Engage target here = Pie off area

= Target = Move this direction

 168

D. BUILDING 2 SEGMENT 1

Description:
Enter the structure and pie off the area immediately beyond the entrance. Engage

the target to your right. Proceed toward the wall on your left, and briefly inspect the area.
Follow the wall to the corner. Pie off the area around the corner and engage the target to
your left. Move tactically through the environment as you would in a real environment.

Key:
 = Start = Engage target here = Pie off area

= Target = Move this direction

 169

E. BUILDING 2 SEGMENT 2

Description:
Move along the wall to your left until coming to the corner. Pie off the area at the

corner and proceed along the other side of the same wall until you reach the next corner.
Pie off the area around the corner and engage the target. Proceed across the room to the
next doorway. Pie off the area in the doorway and engage the target. Move tactically
through the environment as you would in a real environment.

Key:
 = Start = Engage target here = Pie off area

= Target = Move this direction

 170

F. BUILDING 2 SEGMENT 3

Description:
Move along the wall to your right until you see the long corridor off to your left.

Pie off the corridor and engage the target. Cross the room and move along to wall to
your left until you reach the next doorway. Pie off the room and engage the target. Once
clear, move across the room to the exit. Pie off the area outside of the exit and engage
the target. Move tactically through the environment as you would in a real environment.

Key:
 = Start = Engage target here = Pie off area

= Target = Move this direction

 171

G. BUILDING 3 SEGMENT 1

Description:
Enter the structure and pie off the area immediately beyond the entrance. Engage

the target to your right. Proceed toward the wall on your left, and briefly inspect the area.
Follow the wall on your left to the next doorway. Pie off the area through the doorway
and engage the target in the corner. Move tactically through the environment as you
would in a real environment.

Key:
 = Start = Engage target here = Pie off area

= Target = Move this direction

 172

H. BUILDING 3 SEGMENT 2

Description:
Proceed towards the entrance in front of you. Pie off the area through the

entrance. Turn left and proceed along the wall towards the next doorway. Pie off the area
through the doorway and engage the target lying along the right wall. Once clear, cross
the room and approach the far right doorway. Pie off the area around the doorway and
engage the target. Move tactically through the environment as you would in a real
environment.

Key:
 = Start = Engage target here = Pie off area

= Target = Move this direction

 173

I. BUILDING 3 SEGMENT 3

Description:
Cross the room to the doorway at your far right. Pie off the area through the

doorway and engage the target. Turn right and pie off the area around the corner to your
right. Engage the target against the right wall. Once clear, proceed down the corridor to
the exit on the far left. Pie off the area beyond the exit and engage the target. Move
tactically through the environment as you would in a real environment.

Key:
 = Start = Engage target here = Pie off area

= Target = Move this direction

 174

THIS PAGE INTENTIONALLY LEFT BLANK

 175

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman, Code CS
 Computer Science Department, Code CS
 Naval Postgraduate School
 Monterey, California

4. Dr. Rudy Darken
 Modeling of Virtual Environment and Simulations (MOVES) Program
 Naval Postgraduate School
 Monterey, California

5. CDR Joseph Sullivan
 Computer Science Department, Code CS
 Naval Postgraduate School
 Monterey, California

6. Marine Corps Representative

Naval Postgraduate School
Monterey, California

7. Director, Training and Education, MCCDC, Code C46
Quantico, Virginia

8. Director, Marine Corps Research Center, MCCDC, Code C40RC
Quantico, Virginia

9. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
Camp Pendleton, California

